
 

SPACECRAFT PROXIMITY OPERATIONS USED TO ESTIMATE

THE DYNAMICAL & PHYSICAL PROPERTIES OF A

RESIDENT SPACE OBJECT

THESIS

Abraham Franz Brunner, First Lieutenant, USAF

AFIT/GA/ENY/07-M03

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



The views expressed in this thesis are those of the author and do not reflect the

official policy or position of the United States Air Force, Department of Defense, or

the United States Government.



AFIT/GA/ENY/07-M03

SPACECRAFT PROXIMITY OPERATIONS USED TO

ESTIMATE THE DYNAMICAL & PHYSICAL PROPERTIES OF

A RESIDENT SPACE OBJECT

THESIS

Presented to the Faculty

Department of Aeronautics and Astronautics

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Astronautical Engineering

Abraham Franz Brunner, B.S.

First Lieutenant, USAF

March 2007

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED





AFIT/GA/ENY/07-M03

Abstract

When conducting a space proximity operation, developing high-fidelity esti-

mates of the dynamical and physical properties of a Resident Space Object (RSO)

based on post-rendezvous observational data acquired, is imperative for the under-

standing of the RSO itself and the operating environment. This research investigates

the estimation of relative motion dynamics, rotational dynamics, and the feasibility

of estimating the moments of inertia of a RSO. Using the Hill-Clohessy-Wiltshire

equations, rigid-body dynamics, and estimation theory, a nonlinear least squares

estimation algorithm is implemented in the processing of range data from tracked

observation points on the RSO body. Through simulation, it was determined that ac-

curately estimating the relative motion and rotational dynamics is possible. However

directly estimating the moments of inertia using range data proved to be problematic

and exposed a possible observability limitation. Yet in general, the solutions were

heavily dependent on the quality of the a priori knowledge as well as the reduction

of solution ambiguity through the use of multiple observational data sets.
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SPACECRAFT PROXIMITY OPERATIONS USED TO

ESTIMATE THE DYNAMICAL & PHYSICAL PROPERTIES OF

A RESIDENT SPACE OBJECT

I. Introduction

Major advances in the area of relative navigation and rendezvous are leading to new

applications of spacecraft missions which will greatly further our capability to operate

in space. With the developing engineering and technology of autonomous rendezvous

missions, the next logical step is conducting autonomous proximity operations on or

about a Resident Space Object (RSO). This is a very exciting and promising field

with incredible futuristic applications for both the civilian and the military space

communities. Conducting a proximity operation requires the performing spacecraft

to carefully function in a very active and dynamic environment; where typically,

very little is known for certain. The complexity of the operating environment can

be successfully managed if the dynamical parameters required to operate near the

RSO can be accurately characterized and understood [1]. Whether the proximity

mission is solely limited to making observations of the RSO or if the observation

activity is a precursor to a more involved and intrusive stage of a proximity mission,

understanding the dynamics and physical properties of the RSO provides valuable

insight into the operating environment, as well as the RSO itself.

This thesis will explore the use of nonlinear least squares theory to estimate

the dynamical and physical properties of a RSO. Specifically, the relative motion dy-

namics, rotational dynamics, and moments of inertia will be estimated using range

observations made by an observing spacecraft performing a space proximity opera-

tion in the vicinity of the RSO.
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1.1 A Historical Perspective

Several milestone space programs in the history of astronautics have led to

today’s advances in autonomous rendezvous and ultimately to the feasibility of per-

forming autonomous proximity operations and observations. First demonstrating the

initial concepts of rendezvous and docking techniques were the Gemini and Apollo

programs [2]. The Space Shuttle program then furthered the versatility and fre-

quency of rendezvous and proximity operation missions in low earth orbit (LEO)

[2]. The move from a human-controlled operation to a new era of autonomous ren-

dezvous and autonomous proximity operations has been underway as seen in recent

programs such as the XSS-11 mission and the Hayabusa mission [2, 3].

1.1.1 The Gemini & Apollo Programs. In 1965, a modified Titan II In-

tercontinental Ballistic Missile (ICBM) booster launched the first Gemini mission

from Cape Canaveral [4]. This program led to the first American space walk; and in

December of 1965, the revolutionary rendezvous and docking concept was demon-

strated by the joint rendezvous mission of the Gemini VI and Gemini VII spacecrafts

[5, 4]. Prior to the conclusion of the Gemini program in 1966, work had already be-

gun on the Apollo program. This manned program used the rendezvous techniques

learned during the Gemini program as the foundation for the mission to the Moon.

In the Apollo Moon mission, after leaving the Lunar surface, the Lunar Excursion

Module (LEM) was required to rendezvous and dock with the Command Service

Module (CSM) using radar during long-range separations and crew observations for

the final docking stages [2]. Zimpfer et al. [2] explains further that the rendezvous

calculations were performed on the ground while the on-board system was able to

automatically control thruster firings. Again, the terminal phase of capture between

the LEM and CEM was manually controlled by the on-board crew. The Apollo

program demonstrated the fundamentals of guidance, navigation, and rendezvous &

capture, with minimal computer power that still serves as the foundation for today’s

concepts.
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1.1.2 Space Shuttle Program. Perhaps one of the most well known space

vehicles today, the Space Shuttle has repeatedly demonstrated the ability to ren-

dezvous in LEO and perform what could be considered the start of proximity opera-

tions since the 1980’s. Major rendezvous and proximity operations accomplished by

the Space Shuttle Program include the Discovery STS-51I mission in 1985, where the

Shuttle crew captured, repaired, and redeployed the SYNCOM IV-4 (LEASAT-4)

communications satellite [6]. In years following, the Orbiter has docked with the

Soviet-made Mir space station and the International Space Station (ISS). In gen-

eral, the rendezvous maneuver sequence is planned by ground operators, and with

crew command, executed by the on-board Guidance Navigation & Control (GN&C)

system [2]. The GN&C system performs rendezvous functions, relative navigation,

targeting, and control; yet, the Orbiter crew manually performs the final docking

maneuvers using visual aids and data from a LIDAR Trajectory Control Sensor [2].

Including the Space Shuttle program and prior programs, the level of computer and

sensor technology involved in actually performing the rendezvous and proximity op-

erations has increased dramatically. Yet the final stage, the action defining a space

proximity mission, still remains in the control of a human operator performing the

final action using today’s available computing and sensor technology.

1.1.3 Recent Programs. In recent years there have been several programs

designed to explore autonomous navigation and autonomous proximity operations

and planning. Some of these missions include the Experimental Satellite System-11

(XSS-11) of the USAF and the Japanese Hayabusa mission [2, 3].

The USAF Air Force Research Laboratory (AFRL) and Lockheed Martin Space

Systems Co., Waterton, CO, developed the XSS-11 spacecraft to demonstrate au-

tonomous rendezvous, autonomous proximity operations, and autonomous mission

planning. Launched by a Minotaur I booster in April 2005 from Vandenberg Air

Force Base, the spacecraft successfully performed proximity operations with its ex-

pended upperstage from distances between 500m and 1.5 km [7]. The spacecraft has
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performed over 75 natural motion circumnavigations of the Minotaur upperstage [7].

XSS-11 uses advanced on-board planning and guidance algorithms including an event

planner, a monitor & forward thinking resource manager, and a proximity operations

guidance system developed by Draper Laboratory [2]. The 100-kilogram spacecraft

is equipped with an active LIDAR sensor and a passive camera used for relative navi-

gation [2, 7]. Figure 1.1 shows an image taken by the 30-kilogram XSS-10 spacecraft

(the predicessor of the XSS-11) of its Boeing Delta II upperstage in 2003. Figure 1.2

is from an image taken by the XSS-11 spacecraft of its Minotaur upperstage from a

distance of 500 meters with the Earth in the background [7].

Figure 1.1 XSS-10 Image of Delta II Upperstage (USAF Photo)

Figure 1.2 XSS-11 Image of Minotaur Upperstage (USAF Photo)
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In May 9, 2003, the Hayabusa (MUSES-C) spacecraft was launched with a

M-V booster from the Kagoshima launch site by the Japan Aerospace Exploration

Agency (JAXA) [8]. The Hayabusa spacecraft was developed for a sample return

mission to the asteroid Itokawa (25143), named after the late Dr. Hideo Itokawa,

considered the father of the Japanese space program [8]. The mission is being used

to demonstrate technology needed for the spacecraft to autonomously retrieve sci-

entific samples from a small celestial body and return the sample back to Earth.

JAXA states that the Hayabusa mission objectives are to demonstrate the following

four key technologies: interplanetary travel using ion engines, autonomous naviga-

tion and guidance using optical measurements, sample collection under micro gravity

from Itokawa, and direct re-entry to Earth from an interplanetary orbit [3]. After

successfully navigating itself to the asteroid without human guidance, the spacecraft

began its proximity operations and had autonomously observed the asteroid by hov-

ering 7 to 20 kilometers above its surface [8]. Using a Telescope Wide-View Camera,

LIDAR, and a Near-Infrared Spectrometer, Hayabusa has mapped the surface of

the asteroid and its features so that its geometry, mass properties, and composition

can be determined [3, 8]. Figure 1.3 shows an image of the asteroid taken by the

Hayabusa spacecraft camera from a distance of approximately 8 kilometers [3].

Figure 1.3 Asteroid Itokawa (courtesy of JAXA)
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1.2 Applications

In a paper written by D.J. Scheeres [1], he explains the difficulty of a spacecraft

or surface vehicle operating in the vicinity of a small solar system body. Mainly, the

difficulty is due to a lack of knowledge and uncertainty of the physical characteris-

tics of the Target body and its possible chaotic dynamical environment[1]. Scheeres

writes, “To successfully carry out close proximity operations about these bodies

requires an understanding of the orbital dynamics close to them, a knowledge of

the physical properties of the body and the spacecraft, and an appropriate level

of technological sensing and control capability onboard the spacecraft [1].” Having

the ability to derive and estimate physical and dynamical properties of an RSO

based on post-rendezvous observations has obvious civilian and military applica-

tions. In all cases, the pre-programmed model of the operating environment formed

by Earth-based sensor data (including the dynamics of the Target) can be updated

by the Observer with a more accurate data set in real-time; thereby, reducing the

uncertainty of the operating environment. As with the Hayabusa mission, a civilian

application requiring the need to understand the physical properties and dynam-

ics of an asteroid or small moon is a sample return mission. Closer to Earth, the

inspection of space-based assets, such as the ISS, Hubble telescope, etc., could be

made allowing for repair or servicing. Possible non-aggressive military applications,

for a maneuverable and autonomous spacecraft capable of collecting observational

data and making physical and dynamical estimates of a Target range from dam-

age inspection of larger US satellites, on-orbit repair, re-fuelling, and possibly RSO

identification and characterization.

1.3 Key Terms

This section will define and elaborate on key terms and concepts referred to

in this research. A general definition for proximity operations and dynamical &
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physical characterization is given below as well as clarification on nomenclature used

in this thesis.

1.3.1 Space Proximity Operations. In general, spacecraft proximity op-

erations is defined in this research as one or more spacecraft bodies conducting

an activity in the close vicinity of a RSO. The solution to the relative motion of

the spacecraft and RSO operating in close proximity to each other is given by the

Clohessy-Wiltshire equations [9]. These relative motion equations along with their

assumptions are explained in Chapter 2. Although no specific and agreeable defini-

tion was found in the literature quantifying the terms proximity or vicinity, dynam-

ically, Equation 2.5 must be satisfied for the Clohessy-Wiltshire equations to hold

true. It would be acceptable to say that relative distances measured in the order of

∼ 103 meters or less could be classified as proximity operations. Traditionally, the

passive body of interest, in which the observations or operations are being conducted

on, is termed the Target. The body (i.e. spacecraft) that is actively performing the

proximity operations (e.g. observations) is termed the Chaser. Other terms typi-

cally found in literature refer to these bodies as Chief & Deputy, Master & Slave,

and Target & Observer, respectively. This paper will use the terms of Target & Ob-

server ; where the Observer is a spacecraft performing the proximity operation and

the Target is the Resident Space Object of interest. Post-rendezvous, the Observer

spacecraft will position itself in the vicinity of the Target in preparation to carry

out its proximity operation mission. In general, proximity operations may include

specific activities such as taking measurement observations of the Target, docking

with the Target to make repairs, or performing a scientific return sample mission.

In this thesis, the proximity activity is taking observable range measurements of the

Target as explained in later sections.

1.3.2 Spacecraft Proximity Sensors. A spacecraft performing proximity

operations would be equipped with a sensor suite used to perform standard attitude
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control and relative navigation which would be needed to travel to the point of ren-

dezvous where the proximity mission would take place. This sensor suite commonly

includes some of the following: a sun sensor, earth sensor, star sensor, ring laser

gyro, magnetometer, and Global Positioning System (GPS) unit [10]. The use of

a star sensor (i.e. star camera) is a method of far-range photogrammetry where

the distance setting of the source is essentially infinity and object measurements

are made from photographic images or line-of-sight measurements. The use of close-

range photogrammetry, where the distance of the source is finite, can be employed to

determine position and attitude of an object; where as, far-range photogrammetry

can only be used to estimate attitude [11]. Close-range photogrammetry was used

for the the XSS-10, XSS-11, and Hayabusa missions. Using photogrammetry and

pattern-recognition methods, position, attitude, and physical feature information

can be derived from the imaged target, passively.

Another essential sensor for space rendezvous and proximity activities is the

scanning Light Detection and Ranging (LIDAR) instrument. Rendezvous Laser Vi-

sion (RELAVIS) and the Rendezvous Laser System (RLS) scanning LIDAR tech-

nology, built by Optech Inc., Ontario, Canada, was used on the XSS-11 mission

as the active rendezvous instrument and similar LIDAR technology is planned for

use on the Mars Sample Return mission (MSR) mission as the primary instrument

for autonomous rendezvous [12]. An example of LIDAR specifications are shown in

Table 1.1 [12].

Table 1.1 LIDAR RELAVIS Instrument Specifications (Optech Inc.)

Min Range 0.5 m

Max Range 5000 m

Mass 15 kg

FOV 10 deg

Sample Rate 5 Hz

Range Accuracy 1 cm

Bearing Accuracy 0.35 mrad

Attitude Accuracy 1 deg
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A scanning time-of-flight LIDAR sensor uses a pivoting mirror to steer laser

pulses sent and then measures the optical time-of-flight required for the pulses to re-

turn and illuminate the focal plane array along with measuring the angle of reflection.

This type of LIDAR sensor provides range and bearing of the target and can also

be used to render a three-dimensional point-cloud image of the RSO. The Hayabusa

spacecraft combined LIDAR range data with camera imagery to accurately estimate

the spacecraft’s position relative to the asteroid [3]. Figure 1.4 shows a data cloud

image of the asteroid Itokawa created from the LIDAR range measurements taken

by the spacecraft and plotted against a model developed by S. Ostro et al. using

ground-based radar [3].

Figure 1.4 LIDAR Data Cloud of Asteroid Itokawa (courtesy of JAXA)

This 3-D shape model was developed while the spacecraft made its early ob-

servations on the asteroid’s equatorial plane. As a result, insufficient data models

the characteristic neck of the asteroid in the polar regions as seen by the optical

navigation camera image shown earlier in Figure 1.3 [3]. Additional data fusion will

eventually resolve this.
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To explore the meaningfulness and possible limitations of minimal data types,

this research will assume that the only available data from the sensors of the Observer

spacecraft are range measurements of the RSO during a finite period of time when

the proximity operation occurs.

1.3.3 Physical & Dynamical Properties. For this research, the physical

properties of the target body are specifically limited to the moment-of-inertia com-

ponents of the RSO. The dynamical properties are characterized by the relative

position and velocity states as well as the angular velocity and Euler orientation

angle states. Scheeres et al. [13] explains that using ground-based radar observa-

tions, Ostro et al. were able to create a model of the asteroid Itokawa and estimate

its rotational states from Earth. Based on the polyhedral shape model, Scheeres et

al. were able to determine estimates of the asteroid’s physical properties such as its

dimensions, volume, center-of-mass location, and moments of inertia as a function

of the unknown mass [13]. By using these estimates as a priori knowledge, a space-

craft could perform observations post-rendezvous, re-estimate the dynamical states

of the RSO at a significantly closer range (improving observational accuracy), and

update the pre-programmed earth-based data set resulting in a high-fidelity model

and accurate state estimates. Physical properties such as mass, moments of inertia,

geometry could be validated and well characterized to relatively high accuracy. With

an updated high-fidelity model of the RSO, and with new rotational state informa-

tion, understanding the dynamical properties of the RSO (e.g. axis of rotation and

spin stability) is greatly enhanced.

1.4 Literature Review

This thesis primarily involves spacecraft dynamics and estimation theory. Lit-

erature is abundant for both relative motion dynamics and rotational kinematics for

a rigid-body. Texts by W. Wiesel [9] and B. Wie [14] cover both relative motion and

rigid-body dynamics quite well. For this research, those references are the primary
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source for the dynamics theory developed in Chapter 2. Another text written by W.

Wiesel [15] provides a very complete foundation and guide for the implementation of

least squares estimation theory for orbit determination, which is heavily used in this

research. In addition, numerous journals authored by D. Scheeres [13, 1] provides in-

sight into applications of estimation techniques using LIDAR and photogrammetry,

proximity missions, and methods in characterizing physical and dynamical proper-

ties of an asteroid. Finally, theses authored by T. Storch, J. Heslin, and V. Chioma

utilized least squares estimation methods for various orbit estimation applications.

However, methods in directly estimating the moments of inertia of a rigid body based

solely on range observations of the rotating body was not found in this literature

review.

1.5 Research Objective

This thesis will explore the ability of a nonlinear least squares algorithm to

estimate the relative motion, rotational states, and moments of inertia of a RSO by

processing range data collected from tracked observational points on the RSO body

from a simulated proximity mission.
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II. Theoretical Basis

2.1 Background

This chapter will discuss the theory that is the foundation of the methodology

used in this thesis. The theoretical basis of this research involves relative motion and

rotational dynamics, linearization of nonlinear dynamical systems, and estimation

theory; specifically, the nonlinear least squares method.

2.2 Dynamics

This section defines the reference frames used and develops the equations of

motion necessary to describe relative motion and rotational kinematics following

derivations provided by Wiesel [9], Wie [14], Meirovitch [16], and Curtis [17]. This

section results in the formation of the dynamics state matrix for the Target body as

seen by the Observer spacecraft.

2.2.1 Reference Frames. The coordinate frames used in this research are

all Cartesian dextral frames. Along with each frame is a set of basis vectors and

their associated scaler coordinates.

2.2.1.1 Earth-Centered Inertial. The Earth-Centered Inertial (ECI)

reference frame is denoted as Fi with the origin at the center of mass (CM) of the

Earth. The Fi frame has basis vectors of {Î, Ĵ, K̂} where, the Î unit vector points in

the direction of the vernal equinox, traditionally denoted by γ. The K̂-axis is defined

as the axis aligned with the spin-axis of the Earth and points out of the geographic

north pole. The Ĵ-axis completes this orthogonal frame shown below in Figure 2.1.

The scalar coordinates associated with the basis vectors of this frame are

(X,Y, Z). The Fi frame is considered inertial and is therefore, fixed in space and

does not rotate with the Earth.
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Ĵ
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Figure 2.1 Earth-Centered Inertial Frame, Fi

2.2.1.2 Orbital Frame. The orbital reference frame, denoted as Fe,

is also referred to as the Euler-Hill frame in most relative motion literature. The

rotating orbital frame has basis vectors of {êR, êθ, êN} where the origin of Fe lies

on a circular orbit defined by the vector, Rtgt, measured from the Fi origin at the

center-of-mass of the Earth. The orbital frame rotates about the êN -axis with the

mean orbital motion, n, defined later in this chapter. The êθ-axis, referred to as the

in-track direction, points along the velocity vector of the motion and is tangent to

the circular orbit during the entire orbital period. The êN -axis is perpendicular with

the orbital plane and is termed the cross-track direction. The êR-axis points radially

outward, in the radial-track direction, the same direction as Rtgt and completes the

dextral reference frame shown in Figure 2.2.

The center of mass of the Target body is centered with the origin of Fe. There-

fore, the vector Rtgt points from the origin of Fi to the origin of Fe–where the CM of

the Target is located. It is important to note that the Target body has freedom of

rotation, with the constraint, that the CM of the Target remains fixed on the Fe ori-

gin. The scalar coordinates associated with the basis vectors of Fe are (δx, δy, δz).

Note that δx and δy do not necessarily have to represent rectilinear coordinates.

They can be interpreted as cylindrical curvilinear coordinates where δx represents
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Figure 2.2 Orbital Frame of Target, Fe

a radial displacement, δr, and δy represents the curved flight-path displacement,

robsδθ, without change to the mathematical expressions [18, 9]. Using a curvilin-

ear coordinate system does not restrict the magnitude of the êθ displacement; and

therefore, extends the validity of the relative motion solution [9, 14]. However, in

this research the Target-Observer distances are so small that differences between the

two frames are considered negligible; therefore, no distinction will be made between

the linear and curvilinear frames.

2.2.1.3 Body Frame. The body reference frame of the Target, de-

noted as Fb, is non-inertial and fixed to the body of the Target. The origin of Fb

is placed at the center-of-mass of the Target. The Fb frame has basis vectors of

{b̂1, b̂2, b̂3} which are aligned with the principal axes of inertia of the Target body.

Figure 2.3 illustrates a generic RSO and its body frame. The associated scalar

coordinates are (b1, b2, b3).

2.2.2 Relative Motion Dynamics. Originally introduced by Hill in 1878,

W. H. Clohessy and R. S. Wiltshire developed a linearized set of equations of relative
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Figure 2.3 Body Frame of Target, Fb

motion in 1960 [19]. Termed the Clohessy-Wiltshire (CW) equations, also known as

Hill’s equations, they describe the relative motion of two satellites in close proximity

while one satellite is in a circular orbit around a central body. The classic CW

equations that are derived in this section assume the Target body follows a circular

reference orbit around the Earth and neglects any disturbance forces. It should be

mentioned, that the CW equations have been modified by others for application in

eccentric reference orbits and to also include perturbations.

2.2.2.1 Hill-Clohessy-Wiltshire Equations. The governing equation

of motion for the classic two-body problem of a satellite and central body is

r̈ = −µr

r3
(2.1)

where r̈ is the acceleration of the body and r is the position vector of the body.

Applying two-body motion to the Target in circular orbit around the Earth results

in Equation 2.1 re-written as

R̈tgt = −µ⊕Rtgt

R3
tgt

(2.2)

where µ⊕ is the gravitational parameter of the Earth.

2-4



The position vector of the Target Rtgt from the origin of Fi is defined as

Rtgt = RtgtêR (2.3)

and in conducting a space proximity operation, consider the Observer spacecraft

operating in close vicinity to the Target. Keep in mind that the center of mass

of the Target is fixed to the origin of the rotating orbital frame, Fe. The relative

position vector of the Observer from the Target, δρ, is defined by the equation below

δρ = δxêR + δyêθ + δzêN (2.4)

A major assumption is that the magnitude of δρ is relatively small compared to the

magnitude of Rtgt. That is
‖δρ‖
‖Rtgt‖

≪ 1 (2.5)

With that assumption in mind, the Observer follows two-body motion as well

r̈obs = −µ⊕robs

r3
obs

(2.6)

where the position vector from the origin of Fi to the Observer spacecraft is robs.

The vector relation between the Observer and Target is then given by the relation

below and shown by the exaggerated illustration in Figure 2.4.

robs = Rtgt + δρ (2.7)

Substituting Equations 2.3 and 2.4 in Equation 2.7 results in

robs = (Rtgt + δx)êR + δyêθ + δzêN (2.8)
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êN
Rtgt

êθ
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Figure 2.4 Relative Motion System

The following acceleration formula [9, 17] along with the circular orbit assumption

r̈
i = ω̇ei × r

e + ωei × (ωei × r
e) + 2ωei × ṙ

e + r̈
e (2.9)

is used where the superscripts i and e indicate the reference frames Fi and Fe,

respectively. The inertial acceleration of the Observer spacecraft is found by taking

the first and second derivatives of Equation 2.8 with respect to time and making the

proper substitutions into Equation 2.9 resulting in

r̈obs = [δẍ − 2ωδẏ − ω2(Rtgt + δx)]êR + (δÿ + 2ωδẋ − ω2δy)êθ + δz̈êN (2.10)

where ω is the angular velocity between the frames Fe and Fi. With the assumption

that the Target body follows a circular orbit, the orbital frame rotation is equal to
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the mean orbital motion of the Target

ωei = ωêN = nêN or simply ω = n (2.11)

where the mean orbital motion of the Target, n, is defined as

n =

√

µ⊕

R3
tgt

(2.12)

Substituting Equation 2.8 into Equation 2.6, now results in

r̈obs = −µ⊕[(Rtgt + δx)êR + δyêθ + δzêN ]

[(Rtgt + δx)2 + δy2 + δz2]
3
2

(2.13)

Using the binomial theorem in the form of

(1 + b)n = 1 + nb +
n(n − 1)

2!
b2 + ... (2.14)

the denominator of Equation 2.13 is expanded as

r−3
obs = [(R2

tgt + 2Rtgtδx + δx2 + δy2 + δz2]−
3
2 (2.15)

=

[

R2
tgt

(

1 +
2

Rtgt

δx +
δx2

R2
tgt

+
δy2

R2
tgt

+
δz2

R2
tgt

)]−
3
2

(2.16)

= R−3
tgt

[

1 − 3

2

(

2δx

Rtgt

+
δx2

R2
tgt

+
δy2

R2
tgt

+
δz2

R2
tgt

+ ...

)]

(2.17)

Replace the denominator of Equation 2.13 with the binomial expansion and neglect

terms higher than first-order. This results in

r̈obs ≈ − µ⊕

R3
tgt

[(Rtgt − 2δx)êR + δyêθ + δzêN ] (2.18)
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Equate Equation 2.10 with Equation 2.18, substitute Equations 2.11 and 2.12, re-

sulting in the system of equations











δẍ − 2ωδẏ − ω2(Rtgt + δx)

δÿ + 2ωδẋ − ω2δy

δz̈











+ n2











Rtgt − 2δx

δy

δz











=











0

0

0











(2.19)

Solve each equation (i.e. row) of Equation 2.19 for δẍ, δÿ, and δz̈, respectively.

Finally, the system of CW equations [9] describing the relative motion of the Observer

spacecraft with respect to the Target is given by

δẍ = 3n2δx + 2nδẏ (2.20)

δÿ = −2nδẋ (2.21)

δz̈ = −n2δz (2.22)

2.2.2.2 Hill-Clohessy-Wiltshire Solution. The closed-form solution

to the CW Equations [9, 17] is given below

δx(t) = (4 − 3 cos nt)δx0 +
sin nt

n
δẋ0 +

2

n
(1 − cos nt)δẏ0 (2.23)

δy(t) = 6(sin nt − nt)δx0 + δy0 −
2

n
(1 − cos nt)δẋ0 +

4 sin nt − 3nt

n
δẏ0(2.24)

δz(t) = δz0 cos nt +
δż0

n
sin nt (2.25)

Recall that the relative position vector of the Observer spaceraft with respect to the

Target in the Fe frame is δρ (Equ. 2.4). Therefore, the relative velocity vector, δρ̇,

is computed by taking the first time-derivative of the position vector; defined as

δρ =



















δx

δy

δz



















and δρ̇ =



















δẋ

δẏ

δż



















(2.26)
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Therefore, the analytical solution for the relative velocity components are found by

taking the time-derivative of Equations 2.23, 2.24, and 2.25, resulting in the following

three expressions:

δẋ(t) = δẋ0 cos nt + (3nδx0 + 2δẏ0) sin nt (2.27)

δẏ(t) = (6nδx0 + 4δẏ0) cos nt − 2δẋ0 sin nt − 6nδx0 − 3δẏ0 (2.28)

δż(t) = −δz0n sin nt + δż0 cos nt (2.29)

The CW state vector explicitly written as a function of time is then defined as

Xcw(t) =







δρ(t)

δρ̇(t)







=























































δx(t)

δy(t)

δz(t)

δẋ(t)

δẏ(t)

δż(t)























































(2.30)

Let Xcw(t0) represent the initial CW state at an initial epoch time, t0. Then let

Xcw(t) represent the propagated CW states at some future time, t. Using both the

closed-form CW solution for the relative position and velocity, define the CW state

transition matrix, Φ(t, t0), as the matrix to propagate from Xcw(t0) to Xcw(t), as

Φcw(t, t0) =





























4 − 3 cos nt 0 0 1
n

sin nt 2
n
(1 − cos nt)0

6(sin nt − nt) 1 0 − 2
n
(1 − cos nt) 1

n
(4 sin nt − 3nt) 0

0 0 cos nt 0 0 1
n

sin nt

3n sin nt 0 0 cos nt 2 sin nt 0

−6n(1 − cos nt) 0 0 −2 sin nt 4 cos nt − 3 0

0 0 −n sin nt 0 0 cos nt





























(2.31)
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Finally, the complete solution of the relative motion system in the Fe frame is com-

pactly defined as

Xcw(t) = Φcw(t, t0)Xcw(t0) (2.32)

2.2.3 Rotational Dynamics. The rotational equations of motion of a rigid

body are given by two systems of equations. The first system is a set of three

differential equations known as Euler’s Equations. The second set consists of three

differential equations describing the orientation of the body in terms of the classic

Euler angles. It should be mentioned that a singularity does exist when using Euler

angles (which will be discussed later in this chapter). One could also obtain the

second set of equations of motion using quaternions to describe the rigid body’s

orientation (without singularities). However, for the scope of this research it is

assumed that no operation is taking place at the singularity. It is also assumed that

the Target body is a rigid body.

2.2.3.1 Euler’s Rotational Equations of Motion. Euler’s Equations,

as derived in [9] and [14] begins with the relation that the applied torque must equal

the inertial time-rate-of-change of the angular momentum of a rigid body (i.e the

Target body)

M = Ḣ (2.33)

where M is the external moment acting about the CM of the Target body and H is

the angular momentum also about the CM of the Target.

The angular momentum of the Target, in the body frame, is expressed as

H = Iωbi (2.34)

Since this is a rigid body, the moment of inertia matrix, I, is constant in Fb. Then

using what is sometimes referred to as the transport theorem, the time derivative of
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the angular momentum in the inertial frame is given by

Ḣ ≡
{

dH

dt

}i

=

{

dH

dt

}b

+ ωbi × H (2.35)

where the b and i superscripts refer to the Fb and Fi, respectively, where the time-

derivative or quantity is in reference to. The angular velocity, ωbi, is simply the

angular velocity of Fb with respect to the Fi and it is also the same quantity used

in Equation 2.34. Substituting Equation 2.34 into Equation 2.35 and recalling that

the moment-of-inertia matrix of the body is constant in Fb yields Euler’s rotational

equation of motion in vector form

M = Iω̇bi + ωbi × Iωbi (2.36)

The term ω̇bi is time-derivative of the angular velocity in the body frame.

Since the Fb frame is defined as the principle-axis reference frame of the Target, the

moment-of-inertia matrix of the Target body is given by

I =











A 0 0

0 B 0

0 0 C











(2.37)

in the Fb frame. The angular velocity vector, ωbi is defined by

ωbi = ω1b1 + ω2b2 + ω3b3 (2.38)

In this research, no external torques are applied to the Target. Therefore,

M = 0b1 + 0b2 + 0b3 (2.39)
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Substituting Equations 2.37 through 2.39 into Equation 2.36 in component form

yields Euler’s Equations, as derived in [9], [14], and [16], shown below

0 = Aω̇1 + (C − B)ω2ω3 (2.40)

0 = Bω̇2 + (A − C)ω3ω1 (2.41)

0 = Cω̇3 + (B − A)ω1ω2 (2.42)

Solving for the angular accelerations results in the following coupled, nonlinear, first

order differential equations of motion

ω̇1 =
(B − C)

A
ω2ω3 (2.43)

ω̇2 =
(C − A)

B
ω1ω3 (2.44)

ω̇3 =
(A − B)

C
ω1ω2 (2.45)

2.2.3.2 Rotational Kinematics. Completing the set of equations of

motion for a rigid body are the kinematic differential equations describing the orien-

tation of the Target. A 3-2-1 Euler angle sequence (i.e. roll-pitch-yaw) is used and

derived following Wiesel [9], Wie [14], and Meirovitch [16].

The 3-2-1 Euler sequence describes the rotation sequence of a body frame

initially coincident with an inertial reference frame rotated to a final orientation

described by the angles, θ1, θ2, θ3. In the case of this research, the rotating Fe frame

is considered quasi-inertial with respect to the Fb frame for short and finite periods

of time during the proximity operation and acts effectively as a reference frame for

the orientation of the Target body frame.

Beginning with the standard sequence to rotate from the orbital reference frame

to the body frame, the matrix [R] is a rotation matrix of sines and cosines. The

subscript of [R] indicates the axis in which a rotation of the specified angle will
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occur. The basis vectors {ξ, η, ζ} and {ξ′, η′, ζ ′} describe the intermediate frames

during the rotation sequence.

1. [R3(θ3)] : {êR, êθ, êN} → {ξ′, η′, ζ ′}

2. [R2(θ2)] : {ξ′, η′, ζ ′} → {ξ, η, ζ}

3. [R1(θ1)] : {ξ, η, ζ} → {b̂1, b̂2, b̂3}

Mathematically, this transition between frames occurs as such



















ξ′

η′

ζ ′



















= [R3(θ3)]



















êR

êθ

êN



















(2.46a)



















ξ

η

ζ



















= [R2(θ2)]



















ξ′

η′

ζ ′



















(2.46b)



















b̂1

b̂2

b̂3



















= [R1(θ1)]



















ξ

η

ζ



















(2.46c)

where the elementary matrices are defined as

[R3(θ3)] =











cos θ3 sin θ3 0

− sin θ3 cos θ3 0

0 0 1











(2.47a)

[R2(θ2)] =











cos θ2 0 − sin θ2

0 1 0

sin θ2 0 cos θ2











(2.47b)

[R1(θ1)] =











1 0 0

0 cos θ1 sin θ1

0 − sin θ1 cos θ1











(2.47c)

2-13



Equating the intermediate transformation equations, Equations 2.46a-c, yields the

relation



















b̂1

b̂2

b̂3



















= [R1(θ1)] [R2(θ2)] [R3(θ3)]



















êR

êθ

êN



















(2.48)

By performing matrix multiplication in the proper sequence for each elementary

rotation matrix yields a single rotation matrix denoted as
[

R
be

]

[

R
be

]

= [R1(θ1)] [R2(θ2)] [R3(θ3)] (2.49)

[

R
be

]

=











cθ2cθ3 cθ2sθ3 −sθ2

sθ1sθ2cθ3 − cθ1sθ3 sθ1sθ2sθ3 + cθ1cθ3 sθ1cθ2

cθ1sθ2cθ3 + sθ1sθ3 cθ1sθ2sθ3 − sθ1cθ3 cθ1cθ2











(2.50)

where the abbreviations sθ = sin(θ), and cθ = cos(θ) are used. The superscript

above the rotation matrix be denotes transformation from Fe → Fb. Therefore, a

vector described in the orbital frame, denoted as {Fe}, can be transformed into a

vector written in body frame components, {Fb}, by pre-multiplying {Fe} with
[

R
be

]

as shown

{Fb} =
[

R
be

]

{Fe} (2.51)

The rotation matrix,
[

R
be

]

, is an orthonormal matrix; hence, it can be shown that

the inverse of the rotation matrix is simply its transpose. Therefore, the rotation

matrix,
[

R
eb

]

, for the inverse transformation, Fb → Fe, is simply

[

R
eb

]

=
[

R
be

]T
(2.52)

Since the focus of the this paper is based on the relative motion of the Target and

the Observer with respect to Fe, it will be necessary to describe the orientation
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of the Target body with respect to the orbital frame as well. Therefore, a vector

written in the body frame, {Fb}, is transformed into a vector written in orbital frame

components, {Fe}, using the rotation matrix,
[

R
eb

]

, as shown

{Fe} =
[

R
eb

]

{Fb} (2.53)

where

[

R
eb

]

=











cθ2cθ3 sθ1sθ2cθ3 − cθ1sθ3 cθ1sθ2cθ3 + sθ1sθ3

cθ2sθ3 sθ1sθ2sθ3 + cθ1cθ3 cθ1sθ2sθ3 − sθ1cθ3

−sθ2 sθ1cθ2 cθ1cθ2











(2.54)

To obtain the kinematic equations of motion, the time-dependence of the Euler angles

will be formed. The time derivatives of the 3-2-1 Euler angles, termed Euler rates,

are denoted as θ̇1, θ̇2, and θ̇3.

The angular velocity solution of the body is provided by numerical integration of

Euler’s Equations 2.43, 2.44, and 2.45. The angular velocity vector is equal to the

angular velocity of the body frame with respect to the inertial frame as shown earlier

in Equation 2.38.

ω ≡ ωbe (2.55)

Therefore, with the rotational sequence in mind, one can write the equivalent state-

ment with mixed basis vectors

ω = θ̇1b̂1 + θ̇2η + θ̇3ζ
′ (2.56)

This relation describes the angular rate of rotation for each axis during the coordinate

frame rotation sequence. Using Equation 2.56 and Equations 2.47a-c results in the
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angular velocity expressed solely in the body frame



















ω1

ω2

ω3



















=



















θ̇1

0

0



















+ [R1(θ1)]



















0

θ̇2

0



















+ [R1(θ1)] [R2(θ2)]



















0

0

θ̇3



















(2.57)

The result of the multiplication in matrix form is



















ω1

ω2

ω3



















=











1 0 − sin θ2

0 cos θ1 sin θ1 cos θ2

0 − sin θ1 cos θ1 cos θ2





























θ̇1

θ̇2

θ̇3



















(2.58)

Finally, solving for the Euler rates yields the remaining system of kinematic dif-

ferential equations [14] needed for describing the rotational motion of the Target

body



















θ̇1

θ̇2

θ̇3



















=
1

cos θ2











cos θ2 sin θ1 sin θ2 cos θ1 sin θ2

0 cos θ1 cos θ2 − sin θ1 cos θ2

0 sin θ1 cos θ1





























ω1

ω2

ω3



















(2.59)

and expressed in three scalar equations for consistency

θ̇1 = ω1 + ω2 sin θ1 tan θ2 + ω3 cos θ1 tan θ2 (2.60)

θ̇2 = ω2 cos θ1 − ω3 sin θ1 (2.61)

θ̇3 = ω2 sin θ1 sec θ2 + ω3 cos θ1 sec θ2 (2.62)

The solution to Euler’s Equations 2.43, 2.44, and 2.45, provides the angular velocity

vector as a function of time. Using that vector in Equation 2.59, and numerically

integrating, will provide the orientation of the Target as a function of time.
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The major drawback of using Euler angles to describe the orientation of a rigid body

is the existence of a singularity. In this rotational scheme, the singularity occurs

when θ2 = π
2
. As mentioned in the beginning of this section, for the purpose of this

research, Euler angles are sufficient to describe the orientation of the Target. It will

assumed that the Target body does not operate in this singularity region during the

relatively short duration of the proximity operation studied.

2.2.4 Dynamics State Vector. The Target is characterized by its states,

including both its relative motion (i.e. CW position and velocity) with the Observer

as well as its rotational body dynamics (i.e. angular rotation and Euler orientation

angles). Consolidating the state parameters that describe the dynamical uniqueness

of the Target at any moment in time during the proximity operation leads to the

formation of the complete dynamics state matrix.

Define Xrot(t) as the rotational dynamics portion of the state matrix

Xrot(t) =























































ω1(t)

ω2(t)

ω3(t)

θ1(t)

θ2(t)

θ3(t)























































(2.63)

Using a Runge-Kutta numerical integration method, the numerical solution of Equa-

tions 2.43, 2.44, and 2.45 results in ω1, ω2, and ω3 and the numerical solution of

Equations 2.60, 2.61, and 2.62 results in θ1, θ2, and θ3. These parameters of angular

velocity and orientation angles form a state vector of the rotational states of the

Target as a function of time.

Recall, Equation 2.30 defines the states for the dynamics of the relative motion

between the Target and the Observer. Consolidating the CW and rotational state

2-17



vectors results in the complete state vector, X(t), describing the dynamics of the

Target body with respect to time.

X(t) =







Xcw(t)

Xrot(t)







(2.64)

In expanded form, the transpose of the complete 12-state vector of the Target’s

dynamics is defined as

X =
[

δx δy δz δẋ δẏ δż ω1 ω2 ω3 θ1 θ2 θ3

]T

(2.65)

Using the assumption that the moments of inertia of the Target are constant over

time. The time-derivative of the Target MOI are given by the following equations

Ȧ = 0 (2.66)

Ḃ = 0 (2.67)

Ċ = 0 (2.68)

where the MOI states are defined as

Xmoi =



















A

B

C



















(2.69)

By removing the CW states Xcw from Equation 2.64 and including Xmoi(t), results

in a separate 9-state vector version defined as

X =
[

ω1 ω2 ω3 θ1 θ2 θ3 A B C
]T

(2.70)
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2.3 Dynamics Linearization

Apparently, the world was not created using a linear dynamics model, which

simply means most of the dynamical behavior that one would be interested in is sim-

ply nonlinear and/or unpredictable in nature. However by limiting our observation

time and invoking small state changes, one can essentially linearize the nonlinear

systems in regions that would provide approximate results. Using the derivations

provided in two texts by Wiesel [15, 20], methods of linearization are formulated

below.

2.3.1 Equations of Variation. The dynamical state of the Target-Observer

system is described by the relative position, relative velocity, angular velocity com-

ponents, and Euler orientation angles derived in the last section. These system state

variables comprise the dynamics state vector, X. Each system state variable has an

associated equation of motion. Therefore, the change of the state vector with respect

to time is dictated by the equations of motion

Ẋ = f(X, t) (2.71)

To create a trajectory, initial state conditions, X0(t0), must be defined at some

epoch time, t0. Using numerical integration methods, the state vector can then

be propagated to some future time resulting in a trajectory X0(t). With a slight

change in the state vector, δX, one would expect a slight change in the trajectory.

The resulting trajectory is then said to be close to the original trajectory. This

fundamental expectation can be written, in general, as

X(t) = X0(t) + δX(t) (2.72)
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Substituting Equation 2.72 into Equation 2.71 yields

Ẋ = Ẋ0 + δẊ = f(X0 + δX, t) (2.73)

Applying a Taylor series expansion to the equations of motion

∞
∑

n=0

f (n)(α)

n!
(x − α)n = f (0)(α) + f (1)(α)(x − α) +

f (2)(α)

2!
. . . (2.74)

about the point α = X0 + δX where, δX=0, and neglecting second-order terms and

higher, results in

Ẋ ≈ f(X0 + 0) + f
(1)(X0 + 0)(X0 + δX − X0 − 0) + O(2) (2.75)

Ẋ0 + δẊ ≈ f(X0) +
∂f

∂X

∣

∣

∣

∣

X0

δX (2.76)

After cancelling Equation 2.71 from both sides, results in the familiar equations of

variation used for the linearization of the dynamics

δẊ =
∂f

∂X

∣

∣

∣

∣

X0

δX = A(t)δX (2.77)

The equations of variation are time-varying linear ordinary differential equations.

Matrix A is a square matrix with the dimensions of the number of states. It is

formed by the partial derivatives of the equations of motion with respect to the

state variables evaluated at some nominal trajectory.

2.3.2 State Transition Matrix. The solution to the Equations of Variation,

Equation 2.77, is provided in detail by Wiesel [15]. They are found by summing the

individual components of δX at an initial time multiplied by each solution vector,
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that is

δX(t) =
N

∑

i=1

δXi(t0)φi(t) (2.78)

Arranging the vector solutions, φi, into a square matrix format results in the forma-

tion of the State Transition Matrix, Φ

δX(t) = Φ(t, t0)δX(t0) (2.79)

The matrix Φ(t, t0) propagates the state from time t0 to time t. Another valid

expression of the state transition matrix is the differential equation

Φ̇(t, t0) = A(t)Φ(t, t0) (2.80)

From Reference [15], an identity of the state transition matrix is

Φ(t2, t0) = Φ(t2, t1)Φ(t1, t0) (2.81)

This identity is useful in de-bugging and validation of code for the estimator program

that will be mentioned in the next chapter.

2.4 Estimation Theory

Thus far, the theory governing the deterministic dynamics of the Target-

Observer system has been discussed. Following the detailed derivation provided

by Wiesel [15], this section will briefly explore the theory behind the least squares

estimation method of data reduction.

The method of least squares estimation is based primarily on the following

assumptions:

• Gaussian distribution of error in the observational data
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• Deterministic dynamics (i.e. no error in the dynamics model)

• Principle of Maximum Likelihood approach to probability

2.4.1 Probability Theory. French mathematician Abraham de Moivre

(1667-1754) first introduced the mathematical equation of the normal distribution

curve in 1733 [21]. The normal distribution is often referred to as the Gaussian

distribution in honor of the German mathematician and astronomer Carl Friedrich

Gauss (1777-1855). Gauss, considered a mathematical Wunderkind or child prodigy,

is credited for the development of the theoretical basis of least squares in 1795 at the

age of eighteen [22, 23]. Gauss introduced and applied his method of least squares in

1801 to accurately re-discover the asteroid Ceres (although the method was officially

published by Adrien-Marie Legendre five years later) [22, 23]. Beginning with the

Gaussian or normal statistical distribution model [21], explained below, the familiar

probability density function is

P(x; µ, σ) =
1

σ
√

2π
exp

(

(x − µ)2

2σ2

)

(2.82)

Following the derivation provided by Wiesel [15], in least squares estimation theory,

the observational data (i.e. the raw physical measurements) contain error, which has

a Gaussian distribution expressed as

P(e) =
1

σ
√

2π
exp

(−e2

2σ2

)

(2.83)

where P(e) is the probability of obtaining an error, e. Once a range of error is

defined, the area under the Gaussian curve will give the probability of the error

occurring within the range. Lets describe a measurement, x, as

x = x0 + e + b or e = x − b − x0 (2.84)
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where x0 is the unknown true value, the true random error e in the measurement,

and the bias b of the instrument. From another perspective, applying Equation 2.83

and the error function to observational data, the probability of data x lying within

a defined interval can then be predicted. The distribution is normalized so that the

sum over all values gives a probability of 1. The standard deviation, σ, defines the

width of the Gaussian curve which is symmetric about its mean, µ, often defined as

the true value and with a bias of zero (no shift). A large σ results in a broad Gaussian

curve (i.e. low precision) and a small σ results in a narrow curve (i.e. high precision).

Therefore, an instrument is considered precise when it has a relatively small standard

deviation because the measurement data points have a smaller spread from the true

value, µ. The Gaussian curve shown in Figure 2.5 illustrates that approximately

68% of the data sample (i.e. measurements x) will lie within the range of ±1σ from

the actual true value, µ = x0.

Figure 2.5 Gaussian Distribution, (courtesy of Beirne)

Before proceeding, the Central Limit Theorem should be mentioned. Wiesel [15]

describes this theorem as “the keystone of estimation theory” because this theorem

is what allowed Gauss to justify the assumption that the statistical behavior of error

inherent in measurement data is Gaussian in nature. Although the lengthy proof is

not shown here, it can be found in great detail in the text by Wiesel [15].

In the simplest case, multiple measurements are made in an attempt to accu-

rately determine a single true value that one wishes to know exactly. Unfortunately,
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the true value is never known exactly to infinite point precision; instead one must

settle for an estimate of the true value. Given N independent measurements, xi, of

some exact quantity, x0, the joint probability is given by the product of the individual

Gaussian distributions

P(x1, x2, ..., xN) = (2π)−
N
2

[ N
∏

i=1

σ−1
i

]

exp

(

−
N

∑

i=1

(xi − x0)
2

2σ2
i

)

(2.85)

where the instrument standard deviation, σ, describing the measurement error is

known. Keep in mind the accuracy of the measurement data described by its σ-value

is actually a property of the instrument making the measurement. As mentioned ear-

lier, since the true value that one attempts to know through multiple measurements

is actually unattainable, and the true error of the measurement is also unknown,

Equation 2.85 leads to an indeterminable condition. In order to make progress in

quantifying an unknown quantity, an estimate x̄ of the true quantity x0 will be

made. The pessimistic and ultra-conservative approach is to assume that the error

in the measurement data is present in its most maximum form possible. This would

lead to the estimate of x̄ = ±∞ which would lead nowhere in estimating the true

value. Therefore, the optimistic approach or Principle of Maximum Likelihood is

used. This principle defines the “...estimate x̄ as the value of x0 which maximizes

the probability of having obtained the actual data set [15].” Equation 2.85 is used

with the substitution of the estimate x̄ for the true value x0

P(xi) = (2π)−
N
2

[ N
∏

i=1

σ−1
i

]

exp

(

−
N

∑

i=1

(xi − x̄)2

2σ2
i

)

(2.86)

The next step, using the Principle of Maximum Likelihood, is to maximize the

probability. By taking the derivative of the exponential quantity of Equation 2.86

with respect to the estimate x̄ and setting it equal to zero minimizes the exponential
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quantity which maximizes the probability resulting in the Method of Least Squares

d

dx̄

N
∑

i=1

(xi − x̄)2

2σ2
i

= 0 (2.87)

The least squares method is commonly described as minimizing the sum of the square

of the residuals. Taking the derivative yields

N
∑

i=1

(xi − x̄)

σ2
i

= 0 (2.88)

The key step in this entire formulation was replacing the unattainable true error of

ei = xi − x0 (2.89)

with the residual

ri ≡ xi − x̄ (2.90)

where the residual is defined as the difference or essentially the error between the

observed quantity and the calculated quantity. Therefore, the statistics of the resid-

uals can give you insight on the estimate. If the estimate is nearly equal to the true

value then the residual will be nearly equal to the true error [15].

2.4.2 Linear Least Squares. Following the text by Wiesel [15], the objective

is to estimate the state of a linear dynamic system at epoch time t0 from measurement

data zi taken at specific observation times ti.

Xi(t) = Φ(ti, t0)X(t0) (2.91)

In linear least squares the key assumption is that the system state at time ti is

linearly related to the data observed at ti. That is, the data taken at a specific time
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zi(ti) can be expressed as the observation relation

zi(ti) = HiX(ti) + ei (2.92)

where the data is simply a scalar multiple, Hi, of the state X(ti) and the true error

of the data ei. By substituting the dynamics of Equation 2.91 into Equation 2.92

relates the error from a measurement taken at a current time to the state at epoch

time t0

ei = zi(ti) − HiΦ(ti, t0)X(t0) (2.93)

where

Ti ≡ HiΦ(ti, t0) (2.94)

Since there are N observations it is convenient to consolidate the data in matrix

format. The single observational data vector zi may actually contain more than one

measurement taken at a single time ti (e.g. range, azimuth, elevation data taken

simultaneously at each time). All the data vectors are assembled into a larger data

vector spanning t1 to tN

z =































z1

z2

...

zN































(2.95)

The observation matrix is formed as

T =































T1

T2

...

TN































(2.96)
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It will be assumed that each data measurement zi is statistically independent and

therefore, the instrument covariance matrix can be formed of individual covariances

on the diagonal with zeros on the off-diagonals. Each covariance Qi corresponds to

each observation zi

Q =

















Q1

Q2

. . .

QN

















=

















σ2
1

σ2
2

. . .

σ2
N

















(2.97)

where σi is the standard deviation of the measurement by the instrument, also de-

noted as σinstr. The instrument covariance matrix, Q, is square with the dimensions

of N×N where N is the number of observations. Resulting from the derivation pro-

vided by Wiesel [15] the estimate of the linear dynamical system X̄ at epoch time t0

is given by

X̄(t0) = (T T Q−1T )−1T T Q−1
z (2.98)

with an associated state covariance PX̄ at epoch time t0

PX̄(t0) = (T T Q−1T )−1 (2.99)

2.4.3 Nonlinear Least Squares. With the linear least squares method de-

fined, the nonlinear method will now be developed following the derivation provided

by Wiesel [15]. Nonlinear least squares estimation is used in the case of systems

whose dynamics is non-linearly related to the observations made. This is applicable

to most real-world systems inherently exhibiting nonlinear behavior. Since the state

matrix of the system in this thesis includes nonlinear dynamics, where no linear rela-

tionship exists between the states and the observations, this nonlinear least squares

method will be used.
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Begin with the set of equations of motion of the system whose solutions will

be found by numerical integration

Ẋ = f(X, t)

This numerical integration would result in the explicit solution as a function of time

and the initial conditions or initial states

X(t) = h(X(t0), t) (2.100)

Developed in the previous section of Linearized Dynamics, the linearization of a

nonlinear system results in following statement

δX(t) = Φ(t, t0)δX(t0)

with δX as a small change in the state, and the linearized dynamics formed into

the State Transition Matrix, Φ, linearized about some dynamical trajectory. The

objective is still to know the true state, X0, which is unattainable. Earlier in the

subsection of Probability Theory, it was discussed that one must settle for an estimate

of the state, X̄. However, to initiate the nonlinear least squares estimation process

of finding such an estimate, one must initially use a reference trajectory denoted as

Xref . Xref is initially considered the a priori estimate of the initial states of the

dynamical system at some epoch of time (i.e. the initial educated guess). Using

this least squares method, changes in the state δX will be generated to correct

the reference trajectory to a point of satisfaction where it can be declared that the

reference trajectory Xref is the estimated trajectory X̄ of the true state X0.

The observation relation as a function of the state variables and the observation

geometry is defined as

zi(ti) = G(X(ti), ti) (2.101)

2-28



The true error in the observational data is given by the difference between the actual

collected measurement and what would be the perfect or true measurement.

e = z − z0 (2.102)

= G(X, t) − G(X0, t) (2.103)

= G(X0 + δX, t) − G(X0, t) (2.104)

≈ ∂G

∂X
δX(t) (2.105)

As mentioned earlier, it is expected that the true error will be approximately equal

to the residual. In order to develop a relationship describing how the observation

function would change with respect to a change in the system states, the observation

function is linearized with respect to the state variable about the reference trajectory

Hi(ti) ≡
∂G

∂X

∣

∣

∣

∣

Xref (ti),ti

(2.106)

The residual vector of the observation can be calculated by the difference of the ac-

tual measurement and the expected measurement defined by the observation Equa-

tion 2.101

ri = zi − G(Xref (ti), ti) (2.107)

The residuals from the observation data with Equation 2.94 follow as

ri ≈ HiδX(ti) (2.108)

= HiΦ(ti, t0)δX(t0) (2.109)

= TiδX(t0) (2.110)

Similar to the linear least squares method, the result is

δX(t0) = (T T Q−1T )−1T T Q−1
r (2.111)
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Therefore, the equations for nonlinear least squares estimation are

PδX(t0) = (T T Q−1T )−1 (2.112)

where after convergence would be defined as

PX̄ = PδX (2.113)

and the estimated trajectory would then be expressed as

X̄(t0) = Xref (t0) + δX(t0) (2.114)

When or if the reference trajectory converges to a solution these previous equations

describe the estimated state of the true system at some epoch t0.

2.5 Summary

As mentioned earlier, this research is focused on estimating the relative motion

dynamics, rotational dynamics, and moments of inertia of the RSO. The theory

provided in this chapter yields the equations of motion and associated assumptions

governing the dynamics of the Observer-Target system, estimation theory, and the

definition of the state vectors.

For relative motion dynamics, the equations of motion for relative position

(Equ. 2.23-2.25) and relative velocity (Equ. 2.27-2.29) of the Observer-Target system

are developed and consolidated in the form of a state transition matrix (Equ. 2.31).

The equations of motion for the moments of inertia (Equ. 2.66-2.68) are provided

as well.
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Six ordinary differential equations of motion are required to describe the ro-

tational dynamics of the RSO rigid-body. Euler’s rotational equations of motion

(Equ. 2.43-2.45) are derived along with the remaining three complimentary Euler

rate equations (Equ. 2.60-2.62) using a 3-2-1 Euler rotation sequence.

The estimation theory discussed in this chapter covers the linearization meth-

ods needed for the dynamics and observation function and the mathematics for

implementing the non-linear least squares method in a computer algorithm. Also of

great importance, the states which characterize the Observer-Target system at any

instance in time is provided in the form of two state vectors (Equ. 2.65 and 2.70).

The 12-state vector is used for estimation cases involving relative motion and rota-

tional dynamics of the RSO. In estimating the rotational dynamics and moments of

inertia of the RSO, the 9-state vector version is used.

The general theory and assumptions discussed here serve as the basis for the

approach taken in the effort to explore the estimation of the dynamics and physical

properties (i.e MOI) of the RSO using range observational data. The theory of this

chapter is implemented in the methodology developed in the next chapter, specific

to this research effort.
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III. Methodology

This chapter will begin by formulating the observation function based on the obser-

vation geometry of the Observer-Target system involved in the proximity operation.

The formulation of the linearized observation function and dynamics will follow. A

computer program written in MATLAB was created to model the two-body dynam-

ics of the Observer-Target system. This program, termed the truth model, is used as

the dynamics model of the system as well as a generater for simulated range mea-

surement data. Finally, the algorithm for the nonlinear least squares estimator is

discussed. The estimator program, written in MATLAB, utilizes the simulated range

data to estimate the states of the RSO which will provide insight to its dynamical

and physical properties.

The original effort of this thesis was to explore the performance of a nonlinear

least squares filter for estimating the dynamics of a Target. The rotational velocities

and Euler orientation angles were of particular interest. This led to the use of the

12-state dynamics vector as developed in Equation 2.65. Estimated states include

the relative position, relative velocity, angular velocity, and Euler angles. In an effort

to explore the feasibility of estimating the moments of inertia of the RSO to provide

insight into the object’s physical properties, a 9-state version of the state vector

was created as shown in Equation 2.70. In a scenario where the relative position

and velocities are considered known to sufficient accuracy, the estimated parameters

include the angular velocity, Euler angles, and moment-of-inertia components of the

RSO. This chapter will focus on the development of the H and Φ matrices pertaining

to the 12-state variable version. The formulation method for the 9-variable version

is identical and the program algorithms are not affected. Details specific to the

9-vector version are found in the Appendix A.
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3.1 Observation Function

During the space proximity operation, the Observer spacecraft will be collect-

ing range measurements of continuously tracked points on the Target body for the

duration of the observational period. The relative position and velocity states of

the Observer as well as the Target’s rotational states at a given instant in time are

related to the range observation made at that particular time. This leads to the

purpose of the observation function. The observation function is an expression that

is based on the observation geometry shown in Figure 3.1 that results in expected

observations as a function of the dynamic state variables. Therefore, given the dy-

namic states of the Observer-Target system, the range measurement that should be

made by the Observer spacecraft can be predicted. This predicted range measure-

ment and the actual range measurement made (using simulated range data) is at

the heart of the least-squares estimation process. The observation relation is derived

δx

δy

δz

n

Observer Spacecraft

Target RSO

êN

êR

êθ

b̂3

b̂2

b̂1

rn

nthpoint Rn

Orbital Path

ρρδρ

Figure 3.1 Observation Geometry of Observer-Target System

starting with the relative position vector δρ. Careful attention is paid to the starting
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and terminating points of the vectors.

δρ = −rn + Rn (3.1)

solving for rn, yields

rn = Rn − δρ (3.2)

where the subscript n denotes observation point n on the Target body. The vector

Rn represents the position of point n from the center-of-mass of the Target in Fb.

The vector rn is representative of the observation vector as seen from the Observer

spacecraft to the observational point on the Target body in Fe. Although the rn

vector, by definition, contains magnitude (i.e. range) and directional information,

this thesis will only explore range observational data. Therefore, the actual obser-

vational quantity is simply the magnitude of the rn vector, yielding range, denoted

by the scalar rn

rn = ‖rn‖ = ‖Rn − δρ‖ (3.3)

However, note that the observation function contains vectors of mixed basis. Per-

forming a coordinate frame transformation to Fe using the proper rotation matrix

(Equ. 2.54) with the previous equation results in the expression below with its time-

dependence shown

‖re
n‖ = ‖[Reb]Rb

n − δρe‖ (3.4)

= ‖Re
n − δρe‖ (3.5)

‖re
n(t)‖ = ‖Re

n(t) − δρe(t)‖ (3.6)
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define the position vectors of the nth observation point as

R
b
n =



















b1n

b2n

b3n



















and R
e
n(t) =



















pxn
(t)

pyn
(t)

pzn
(t)



















(3.7)

Substituting Equation 3.7 for R
e
n and Equation 2.4 into Equation 3.6 yields

‖re
n‖ = ‖(pxn

êR + pyn
êθ + pzn

êN) − (δxêR + δyêθ + δzêN)‖ (3.8)

‖re
n‖ = ‖(pxn

− δx)êR + (pyn
− δy)êθ + (pzn

− δz)êN)‖ (3.9)

rn =
√

(pxn
− δx)2 + (pyn

− δy)2 + (pzn
− δz)2 (3.10)

Finally, the range observation function G is defined below in terms of the dynamic

state variables X which will predict the range measurement data. This function, as

developed here, is unique to the system geometry of this research as illustrated in

Figure 3.1.

G = range =
√

(pxn
− δx)2 + (pyn

− δy)2 + (pzn
− δz)2 (3.11)

In the case of multiple range measurements to multiple points taken essentially

simultaneously, the function G simply becomes a vector of range measurements

for a single observation time

G =































r1

r2

...

rN































=































√

(px1 − δx)2 + (py1 − δy)2 + (pz1 − δz)2

√

(px2 − δx)2 + (py2 − δy)2 + (pz2 − δz)2

...
√

(pxN
− δx)2 + (pyN

− δy)2 + (pzN
− δz)2































(3.12)

for observation points 1 to N ; that is, n = 1, 2, . . . , N .
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3.2 Linearization of Observation

This section is devoted to linearizing the observation function to find a linear

relationship between the change of the observation with a change in the dynamics

state vector. This expression will be denoted as the H matrix and will be needed

for the estimation algorithm.

In terms of the state variables, note that the final version of the range observa-

tion expression, Equation 3.11, is a function of the CW relative position vector and

the position vector of the observation point in Fe. However, the observation point

in Fe is a function of the Euler orientation angles due to the rotation of the body

frame of the Target. The version of the observation function in terms of the relative

position state variable, δρ, and the Target observation point position, a non-state

variable, is given by Equation 3.11 as

G = rn =
√

(pxn
− δx)2 + (pyn

− δy)2 + (pzn
− δz)2

From Equation 2.106, recall the linearized observation function with respect to the

state vector is defined as

Hi(ti) ≡
∂G

∂X
(Xref (ti), ti) (3.13)

Note that the range equation, Equation 3.11, is a function of δx, δy, δz, pxn
, pyn

,

and pzn
at any moment in time. In terms of the dynamics state variables, the range

equation is only a function of δx, δy, δz, θ1, θ2, and θ3. For simplicity, all other state

variables which the range equation is not a function of are ignored till the end. This

results in

H =
∂G

∂X
=

[

∂G

∂δx
∂G

∂δy
∂G

∂δz
∂G

∂θ1

∂G

∂θ2

∂G

∂θ3

]

(3.14)

3-5



Recalling that pxn
, pyn

, and pzn
are functions of the Euler angles at specific moments

in time due to the rotation of the Target body, the H matrix can simply be found

using the chain rule in the following fashion

H =
[

∂G

∂δx
∂G

∂δy
∂G

∂δz
∂G

∂pxn

∂G

∂pyn

∂G

∂pzn

]





























1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 ∂pxn

∂θ1

∂pxn

∂θ2

∂pxn

∂θ3

0 0 0 ∂pyn

∂θ1

∂pyn

∂θ2

∂pyn

∂θ3

0 0 0 ∂pzn

∂θ1

∂pzn

∂θ2

∂pzn

∂θ3





























(3.15)

The partial derivatives shown above (and found in Appendix A) are coded into the

program and the matrix multiplication is carried out by the computer program. The

state variables which are not involved are simply zero. This results in the solution

of Hi for every observation time ti.

In terms of the 12-state vector, defined as

X =
[

δx δy δz δẋ δẏ δż ω1 ω2 ω3 θ1 θ2 θ3

]T

the linearized observation function is the solution to

H =
[

∂G

∂δx
∂G

∂δy
∂G

∂δz
0 0 0 0 0 0 ∂G

∂θ1

∂G

∂θ2

∂G

∂θ3

]

(3.16)

In terms of the 9-state vector, defined as

X =
[

ω1 ω2 ω3 θ1 θ2 θ3 A B C
]T

where the relative position variables are considered known constants for each obser-

vation time and are then not estimated states, the linearized observation relation is
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simply the solution to

H =
[

0 0 0 ∂G

∂θ1

∂G

∂θ2

∂G

∂θ3
0 0 0

]

(3.17)

3.3 Linearization of Dynamics

This section will show how the dynamics of the system is linearized resulting in

the formulation of the state transition matrix, Φ. This formulation will be shown for

the 12-state vector version. The 9-state vector version will simply follow the same

method and is given in Appendix B.

Recall from Equation 2.31 that the CW state transition matrix Φcw is already

known. Therefore, the state transition matrix for the rotational portion of the dy-

namics is in need. As defined in Chapter 2, the rotational state vector is

Xrot(t) =
[

ω1 ω2 ω3 θ1 θ2 θ3

]T

Therefore, applying Equation 2.71, the time-derivative of the state vector is shown

below. The vector function, f , is then associated with each state equation of motion.

Functions f1, f2, f3, correspond to Equations 2.43, 2.44, 2.45 and functions f4, f5,

f6, correspond to Equations 2.60, 2.61, and 2.62, respectively.

Ẋrot(t) =























































ω̇1

ω̇2

ω̇3

θ̇1

θ̇2

θ̇3























































=























































f1

f2

f3

f4

f5

f6























































= f(t) (3.18)
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From Equation 2.77, the partial derivatives of the equations of motion with respect

to the state variables of the rotational dynamics are symbolically shown below (the

solution is found in Appendix B)

A =





























∂f1

∂ω1

∂f1

∂ω2

∂f1

∂ω3

∂f1

∂θ1

∂f1

∂θ2

∂f1

∂θ3

∂f2

∂ω1

∂f2

∂ω2

∂f2

∂ω3

∂f2

∂θ1

∂f2

∂θ2

∂f2

∂θ3

∂f3

∂ω1

∂f3

∂ω2

∂f3

∂ω3

∂f3

∂θ1

∂f3

∂θ2

∂f3

∂θ3

∂f4

∂ω1

∂f4

∂ω2

∂f4

∂ω3

∂f4

∂θ1

∂f4

∂θ2

∂f4

∂θ3

∂f5

∂ω1

∂f5

∂ω2

∂f5

∂ω3

∂f5

∂θ1

∂f5

∂θ2

∂f5

∂θ3

∂f6

∂ω1

∂f6

∂ω2

∂f6

∂ω3

∂f6

∂θ1

∂f6

∂θ2

∂f6

∂θ3





























(3.19)

The state transition matrix for the rotational portion is defined as

Φrot =





























φ11 φ12 φ13 φ14 φ15 φ16

φ21 φ22 φ23 φ24 φ25 φ26

φ31 φ32 φ33 φ34 φ35 φ36

φ41 φ42 φ43 φ44 φ45 φ46

φ51 φ52 φ53 φ54 φ55 φ56

φ61 φ62 φ63 φ64 φ65 φ66





























(3.20)

and the time-derivative of the state transition matrix is simply defined as

Φ̇rot =





























φ̇11 φ̇12 φ̇13 φ̇14 φ̇15 φ̇16

φ̇21 φ̇22 φ̇23 φ̇24 φ̇25 φ̇26

φ̇31 φ̇32 φ̇33 φ̇34 φ̇35 φ̇36

φ̇41 φ̇42 φ̇43 φ̇44 φ̇45 φ̇46

φ̇51 φ̇52 φ̇53 φ̇54 φ̇55 φ̇56

φ̇61 φ̇62 φ̇63 φ̇64 φ̇65 φ̇66





























(3.21)
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The matrices above are coded into the estimation program and using a Runga-Kutta

algorithm, the numerical solution to Equation 2.80

Φ̇rot(t, t0) = A(t)Φrot(t, t0)

is solved for resulting in Φrot(t, t0). Incorporating the CW portion (Equ.2.31), results

in the newly developed 12×12 state transition matrix for the 12-state vector version

used in the estimation process

Φ(t, t0) =





Φ
6×6
cw 06×6

06×6
Φ

6×6
rot



 (3.22)

Following the same methodology, with the omission of the CW states and changes

to the A matrix to include the moment-of-inertia terms, the 9-state vector version

of the 9 × 9 state transition matrix is developed and shown in Appendix B.

3.4 Truth Model and Data Generator

A truth model of the dynamics was created to provide a basis for comparison

between the simulated actual dynamics and the estimated dynamics. Also, the truth

model provides a method of generating observational range data since no real-world

experimental data was available for this effort. Both the Truth Model and the Data

Generator were coded in MATLAB.

The Truth Model generates two-body deterministic dynamics data for relative

position, relative velocity, Target angular velocity, Target Euler angle orientation,

and Target moments of inertia for the Observer-Target system for the duration of

the proximity operation in which range observations are being made. Assumptions

programmed into the Truth Model are as follows:

• Target RSO is in a true circular orbit about the Earth

• Moments of Inertia of the Target are constant
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• No perturbations exist

The Data Generator is a program which uses the Truth Model to provide a dy-

namical scenario in which observational range data would be taken by the Observer

spacecraft. With the dynamics data generated for each moment in time, the obser-

vation function (Equ. 3.11) is used to generate observational range measurements.

Two forms of range measurements are created by this program.

• Perfect range measurements with no error

• Noisy range measurements containing Gaussian noise

The pseudo-random Gaussian noise is added to the perfect range data to simulate

real-world data containing measurement error. Assumptions incorporated into the

Data Generator are as follows:

• The time vector associated with the dynamics propagation is identical to the

observation time vector.

• Observation measurements are taken at constant time steps. A non-continuous

data scenario is not considered.

• Observational range sensor and pattern-recognition capability provides an abil-

ity to track user-defined points on the Target body for the duration of the ob-

servation time vector. Data acquisition limitations due to physical obstructions

are not considered.

• For the simulated range data with noise, the standard deviation of instrument

error making the range measurements is known and is constant through the

observational period.

• All measurements are statistically independent

• Target observation points are known in Fb

The program architecture of the Truth Model (including the Data Generator)

developed for this thesis is shown in Figure 3.2.
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TRUTH MODEL

USER INPUT SCRIPT

- Propagate CW Equations of Motion
- Progagate Rotational Equations of Motion
- Form Dynamics State Model

DYNAMICS

OBSERVATION

- Perform Coordinate Transformation
- Evaluate Observ Relation, z = G(X)
- Form Simulated Range Observ Data

- Time Range for Dyn & Observations
- Dynamics 12-State Vector at Epoch
- Moments of Inertia
- Orbital Parameters
- Target Observation Point Location
- Output Settings

, Xdyn(t0)

CW Equations of Motion

Rotational Equ of Motion

ECI Orbit Calculator

Euler Rotation Matrix 3-1-3

Euler Rotation Matrix 3-2-1

Range Generator

- Evaluate CW position solutions
- Evaluate CW velocity solutions
- Xcw(t)

- Numerical Integ of Angular Velocity ODEs
- Numerical Integ of Euler Rate ODEs
- Xrot(t)

- Orbit of Target in ECI-frame
- Orbit of Observ in ECI-frame

- 3-1-3 Euler Rotation [Rie]
- e-frame to ECI-frame

- 3-2-1 Euler Rotation [Reb]
- b-frame to e-frame

- Generate White Gaussian Noise
- Generates Range Data w/o Gaussian Noise
- Generates Range Data w/ Gaussian Noise

DYNAMICS STATE DATA

RANGE OBSERVATION DATA

Plots &Tables

- Simulated 12-State Dyn for Time Range
- Xdyn(t)
- Written to file

- Observation Time Vector
- Simulated Range Data Vector w/ Noise
- Simulated Range Data Vector w/o Noise
- Written to three seperate files

- Various Plots of Dynamics & Observations
- Gaussian Noise Histogram
- Observ Geometry Animation
- Print Table Data to Screen

Truth Model Program Architecture

Target Observation Point File
- Rn = [pxn

pyn
pzn

]
- Entered by the User in matrix format
- m× 3 where m =number of points

Figure 3.2 Truth Model Architecture

3.4.1 Program Execution. Following Figure 3.2, in the user-input script,

the user enters the initial values for the state variables at epoch. That is, the initial

conditions for the CW relative position, CW relative velocity, angular velocity of

the Target, and Euler orientation angles of the Target, as well as moments of inertia

are defined. The altitude of the Target RSO is also entered as well as the epoch

start time, time-step, and propagation time in terms of orbital period. For the

observation portion of the Truth Model, the number of Target observation points to

generate simulated range data for is entered. The standard deviation of the range

data is also entered. A separate file containing the vector positions of the observation

points in Fb is created by the user. This provides the initial conditions and constants

needed for the dynamics portion of the Truth Model. Using the CW solutions for

relative position and velocity, the CW states are solved for every time, ti. Using

the built-in MATLAB Runga-Kutta ode45 routine, the numerical solution to the
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rotational equations of motion are determined for ti. This results in the propagated

dynamics which is written to a file. The observation portion of the Truth Model

reads the dynamics data file and the file containing the observation points, along

with the user’s input of error to generate simulated range observation data with

noise and without. The range data along with the observation time vector is written

to separate files for use by the Estimator program. Various plots, histograms, and

tables are also produced.

3.4.2 Program Validation. Several methods were used in the validation

of the Truth Model code. For the CW relative position and velocity dynamics, the

analytical solution was simply verified by hand-calculations for arbitrary data points.

Also, test cases using relative velocity components in the cross-track, radial-track,

and in-track directions were used to check for the expected effects of orbital drift,

eccentricity changes, inclination changes, and combinations of such.

The validation of the rotational dynamics portion of the model was more in-

volved. Hand-calculations were performed for only single-axis rotations to verify

angular velocities and Euler orientation angles. Also, using the Target’s moments of

inertia and angular velocities, test cases were accomplished to check for rotational

stability about the major, minor, and intermediate axes. Finally, conservation of

angular momentum and conservation of energy checks were built into the code using

‖H‖ = ‖Iωbi‖ = constant

KE =
1

2
ωbi · Iωbi = constant

where the magnitude of the angular momentum H is constant in Fb (Equ. 2.34).

The kinetic energy of the rigid Target body is denoted as KE and given by the

dot product shown above. These checks scan through the generated data to ensure
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constant values of angular momentum and kinetic energy are within a tolerance set

to 10−8.

3.4.3 Simulated Range Data. Using the vector location of the observation

point and the CW relative position vector from the generated dynamics data, the

observation function (Equ. 3.11) is evaluated to produce simulated range data.

Based on the probability theory discussed in Chapter 2, the spacecraft observation

sensor will be plagued with measurement errors following a Gaussian distribution

(Fig. 2.5); Gaussian noise is added to the perfect range data to simulate real-world

data containing measurement error. A MATLAB pseudo-random number generator

is used to create the Gaussian noise which is initialized with every execution using the

current computer clock time as the seed. Figure 3.3 illustrates a sample distribution

of the Gaussian noise for an arbitrary data set spanning one orbital period.

Figure 3.3 Sample Gaussian Noise Distribution

Research indicated that commercially available LIDAR sensors claim range

accuracies from 1 m to 7 mm (one sigma) from distances of near 100m [24, 12, 25].

Since this thesis is focused on estimating the dynamical properties of an RSO for the
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intention of performing a proximity operation possibly involving spacecraft-to-target

interaction, a range accuracy under one meter is a realistic expectation. Therefore,

for the purpose of this research, the range measurement accuracy will be set to 25 cm

(one sigma) for all cases. The noise error simulated in a sample data batch is shown

in Figure 3.4
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Figure 3.4 Sample Range Measurement Noise Error

3.5 Nonlinear Least Squares Estimator

This section will discuss the nonlinear least squares estimator that was created

to estimate the states of the RSO. This program written in MATLAB is illustrated

in Figure 3.5. Two different approaches of the estimation are attempted. Although,

both versions involve the same process and same methodology, the outcome is dif-

ferent.

The first estimation approach uses the standard 12-state vector (Equ. 2.65) to

estimate the relative motion and rotational dynamics of the Target. This method

provides an estimate of the CW position, CW velocities, angular velocities, and

Euler orientation angles. The second approach used in this thesis was motivated
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by an effort to explore the feasibility of estimating the moments of inertia of the

RSO directly based on range observations. In this effort, the relative position data

is considered known-processed data through some prior estimation filter or data

refinement method. That is, the relative position data will not be included in the

least squares estimation process; rather, it will be supplied to the algorithm but

treated as known information. In this 9-state version (Equ. 2.70), the state variables

estimated are the angular velocities, Euler angles, and moments of inertia of the

RSO. This method allows the estimator to focus its effort solely on estimating the

rotational dynamics and moments of inertia of the Target, providing insight into

both its dynamical and physical properties. The results of both approaches will be

presented in Chapter 4.

N-LSQ ESTIMATOR

USER INPUT SCRIPT

- Propagate CW Equations of Motion
- Progagate Rotational Equations of Motion
- Form Xref

- Compute Φ(ti, t0)
- Compute ri = zi − Gi(X)
- Compute Ti

- Compute Running Sums
- Calculate PδX

- Calculate δX(t0)
- Correct Xref+1 = Xref (t0) + δX(t0)
- Check convergence criteria
- Repeat algorithm as necessary

- Estimated Dynamics State Vector at Epoch
- Estimated Moments of Inertia
- Instrument σ

- Filter sensitivity settings
- Data output settings

CW Equations of Motion

Rotational Equ of Motion

CW State Transition Matrix

Rotational State Transition Matrix

- Evaluate CW position solutions
- Evaluate CW velocity solutions
- Xcw(t)

- Numerical Integ of Angular Velocity ODEs
- Numerical Integ of Euler Rate ODEs
- Xrot(t)

- Computes Φcw(ti, t0)

- Computes Φrot(ti, t0)
- incl MOI version

ESTIMATED STATE DATA FILE

COVARIANCE OF ESTIMATE

Plots &Tables

- X̄(t0)
- X̄(t)
- Written to file

- PX̄

- Written to file

- Various Plots of Estimated Dynamics
- Histogram of Residuals
- Data Range and Estimated Range
- Print Table Data to Screen

Estimator Program Architecture

Best-Guess Generator
- S =

∑

i
(zi − Gi)

2

- Provide Guesses for two state variables

Euler Rotation Matrix 3-2-1
- 3-2-1 Euler Rotation [Reb]
- b-frame to e-frame

Full State Transition Matrix
- Form complete Φ(ti, t0)
- 12 or 9 state vector version

H-matrix
- Computes Hi

- 12 or 9 state vector version

Target Observation Point File
- Rn = [pxn

pyn
pzn

]
- Entered by the User in matrix format
- m × 3 where m =number of points

Range Data Files from Truth Model
- Observation time vector
- Range data without noise, z

- Range data with noise, z

Figure 3.5 Estimator Architecture
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3.5.1 Algorithm. Following the theory provided in Chapter 2 for nonlinear

least squares and following the algorithm by Wiesel [15], the estimation algorithm is

as follows:

1. Input a priori estimate of states at epoch

• X(t0)

2. Read data files produced by Truth Model

• Observation time vector

• Range data with or without noise

• File containing target observation points

3. Process all observational data for each time ti

• Propagate state vector, X(ti)

• Calculate Φ(ti, t0)

• Calculate ri = zi − G(X)

• Calculate Ti = HiΦ(ti, t0)

• Calculate and store the running sum
∑

i T
T
i Q−1

i Ti

• Calculate and store the running sum
∑

i T
T
i Q−1

i ri

4. Calculate the correction covariance

• PδX =

(

∑

i T
T
i Q−1

i Ti

)−1

5. Calculate epoch state correction

• δX(t0) = k1PδX

(

∑

i T
T
i Q−1

i ri

)

6. Correct the Reference Trajectory at epoch

• Xref+1(t0) = Xref (t0) + δX(t0)
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7. Determine Convergence

• Covariance criteria check: |δXi(t0)| ≪ k2

√

PδXii

• Residuals σ criteria check: σinstr ≈ σresid, tolerance defined by k3

• If criteria is not satisfied, begin next iteration at step 3. Otherwise,

proceed to step 8

8. Declare Estimate

• Estimate trajectory is X̄(t0) = Xref (t0)

• Covariance of estimate is PX̄ = PδX

3.5.2 Validation. Several methods were used to verify the correctness and

functionality of the estimator and its major modules. For state propagation and

observation relation calculations, the estimator program calls the same validated

script files used by the validated Truth Model program. The linearized observation

relation was check by this approximation

Hij ≈
Gi(Xj + δXj) − Gi(Xj)

δXj

(3.23)

and the linearized dynamics was checked similarly with this relation

Aij ≈
fi(Xj + δXj) − fi(Xj)

δXj

(3.24)

This was accomplished for rows i and columns (i.e. state variables) j using small

(∼ 10−4) state changes δXj, one state variable at a time, for arbitrary test cases.

The state transition matrix was checked to ensure this property was upheld

Φ(t2, t0) = Φ(t2, t1)Φ(t1, t0) (3.25)
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Overall functionality of the estimator was checked by setting the a priori state

estimates at t0 to the actual true states at t0 used by the truth model to generate

the data. As expected, a perfect guess generated a perfect estimate (i.e. the true

trajectory) with zero residuals for all observations.

3.5.3 RSS Guess Generator. Step 1 of the estimation algorithm calls for

the user to enter the a priori estimate of the states at epoch, X(t0). Simply put, the

key to success in this estimation process is having a good initial guess of X(t0) for

the estimator to begin its iterative routine with. In general, there is no guarantee

that the algorithm will converge on the actual trajectory, unless the initial guess

matches the actual true states at epoch exactly. But an initial estimate sufficiently

close to the truth will drastically improve the outcome. The least squares algorithm,

through its iterative process, strives to minimize the sum of the residuals squared,

or the function S

S = r
T Q−1

r (3.26)

This function is minimized to a local minimum. However, this function may ac-

tually have other extrema besides the local minimum where the desired solution

lies [15]. Movement to any other local minimum would result in a case where the

algorithm does not converge to the desired solution. For this reason, the Residual

Sum Squared (RSS) guess program was created. This program attempts to find the

global minimum using

RSS(X1, X2) =
∑

i

(zi − G)2 (3.27)

as a function of two state variables that drive S −→ 0. It should be noted that use

of the RSS guess program is optional and independent of the estimation program.

This RSS Guess Generator will only provide a best-guess solution for two state

variables of interest. It is assumed that the user has a priori knowledge of all other

variables with a certain level of confidence for input into the estimation algorithm.

The limitation to two state variables for this program is simply due to the multi-
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dimensional nature of this problem and the computational intensity involved. In

this thesis, the rotational states of the Target are of particular interest. Therefore,

the guess generator will be used to estimate two of the three rotational velocity

components of the Target. The RSS guess generator algorithm flows as such

1. Select two state parameters of interest for a generated guess

• Choose two of the three: ω1, ω2, ω3

2. Input the guess bound for each state variable

• Parameter 1: a ≤ ω ≤ b

• Parameter 2: c ≤ ω ≤ d

3. Input the guess increment or step-size within the bound

• Create a vector of parameter 1 values from a to b

• Create a vector of parameter 2 values from c to d

4. Compute the predicted range measurements

• Using every combination of parameter 1 and parameter 2 values, aug-

mented with the remainder of the states, assemble X(t0), and propagate

the dynamics to each observation time ti.

• Compute G(X) for each observation time ti

• Read range data from Truth Model output file, zi

5. Compute RSS solution

• Compute sum RSS =
∑

i(zi − G)2 for the data batch as a function of

parameters 1 and 2

6. Output best-guess solution
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• Output: 3-D surface plot where the x-axis corresponds to parameter 1 val-

ues, y-axis corresponds to parameter 2 values, and the z-axis corresponds

to the RSS value for the combination.

• Locate the global minimum value of RSS.

• Using the RSS global minimum, provide the corresponding parameters 1

and 2 values as the best guess solution.

If computational time is not of concern, and the values of two state variables at epoch

are not well known, this tool can provide an extremely good estimate for the two

parameters given a range that may span three orders of magnitude. Implementation

of this tool will be shown in the next chapter.

3.5.4 Program Execution. To begin, the user enters the a priori estimate

of the states at epoch with or without the help of the RSS Guess Generator. It is

also here that the user must select the 12-state or 9-state version for the estimation

process and the number of observational points to use. Also selected is the data

mode for the processing of range data with noise or without noise. The user has

control of tuning the sensitivity of the estimator algorithm by adjusting the filter

setting for the k1, k2, and k3 scaling coefficients. This will be discussed in the

next subsection. The maximum number of iterations and the instrument covariance

value in terms of σinstr are also defined. This value of σinstr should be consistent

with the standard deviation value used in the Truth Model. The user also has

the option of processing the entire data batch or a portion as well as forcing the

estimator to run a specified number of iterations. Various other switches in the

user-input script control the types of output such as plots and tables. Once the

program is executed, built-in checks are performed to enure compatible range data,

observational points, and time data. The estimator will recursively execute the least-

squares algorithm portion of the code until either all convergence criteria are satisfied

or the number of maximum iterations is reached. At that point, the program will
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leave the iterative loop and propagate the estimated dynamics based on the last

valid estimated Xref (t0). Depending on the user’s output selection, various plots

and tables will be displayed or printed. Plots that are available include: comparison

plots of actual and estimated dynamics, actual and predicted range observations, and

the distribution of residuals. Also filter performance data is printed to the screen

such as the standard deviation of the residuals, number of iterations, convergence

status, and covariance values.

3.5.5 Convergence Criteria. In the estimation program, two factors are

used to judge convergence to an acceptable estimate of the true solution. The first

factor is the relative comparison between the state correction δX and its associ-

ated covariance term PδXii
. When successive solutions of δX lie within the error

ellipsoid indicated by the covariance matrix, no further iterations are meaningful to

compute [15]. This convergence criterion coded into the algorithm is expressed as

|δXi(t0)| ≪ k2

√

PδXii
(3.28)

where the absolute value of the state correction, δXi(t0), must be much less that

the square root of the diagonal terms of the covariance matrix PδXii
scaled down by

the coefficient k2. Typical values explored for k2 compare δXi(t0) to 1% to 50% of
√

PδXii
. Specific k2 values will be stated in the next chapter for actual cases. The

diagonal values of the covariance, PδXii
, effectively correspond to the ith state which

is being compared to the corresponding ith state in δXi(t0).

The second parameter, used for ensuring convergence, is the statistical distri-

bution of the residuals from the estimated trajectory. Residuals that are sufficiently

small enough will result in a Gaussian distribution that has a standard deviation

comparable to the original standard deviation of the data batch. A conditional
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statement is coded in the algorithm to check if the following relation is true

σinstr ≈ σresid (3.29)

where σinstr is the standard deviation associated with the instrument measurements

defined in the Q matrix. The standard deviation of the residuals from the estimation

is σresid. The k3 scaling coefficient is used to specify a percentage of error that

is acceptable for Equation 3.29. Although, δXi(t0) may be relatively small and

meet the first criterion above, the residuals may indicate a different story since

the residuals are not dependent on the covariance PδX . In a common case where

the first criterion is met but the residuals are not sufficiently small, results in a

σresid that is near or approaching σinstr. This condition is easily identified by a

Gaussian distribution of the residuals which appears to have a non-zero mean. The

k3 coefficient is chosen such that the mean of the residual distribution is near zero

satisfying Equation 3.29 above. Allowing the algorithm to perform a couple more

successive iterations typically corrects this non-zero mean problem and results in a

fully converged solution.

Stability of the estimator is controlled by the k1 scaling coefficient. This coef-

ficient scales the state correction variables proportionally by a constant. A modified

form of Equation 2.4.3 is used in the algorithm as shown below

δX(t0) = k1PδX

∑

i

T T
i Q−1

i ri (3.30)

Cases exist which the estimator fails to converge on a solution by inadvertently

maximizing the S function, easily identified by residuals approaching infinity. By

proportionally scaling down the state correction vector using k1, the algorithm be-

haves more stable by making smaller corrections and typically moves toward the

desired solution, albeit through more iterations than would normally be required.
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IV. Simulation & Results

Beginning with a hypothetical scenario that provides a basis for the a priori knowl-

edge needed for this estimation process, this Chapter will explore three estimation

cases through simulation. The initial conditions formed from the scenario will be

the basis for the estimation cases. The three cases will explore the effects of the

following on the success of the nonlinear least squares estimator: noisy data, the a

priori estimates, and the number of observational points used (i.e. number of data

batches processed). Each case will result in estimates of the rotational dynamics

and moments of inertia, which will provide insight into the dynamical and physical

properties of the hypothetical resident space object.

4.1 Scenario

Consistent with the assumptions made in the derivation of the equations of

motion for the system dynamics, the Target is assumed to be in a true circular orbit,

free from external perturbations, for the duration of the simulated proximity opera-

tion in which observational data is being collected. The Target is said to be in LEO

with an altitude of 800 km (497mi). In nonlinear least squares estimations, having

initial estimates or a priori knowledge of the state parameters is required. Choosing

the initial values for these parameters is absolutely critical in the estimation outcome

(i.e. convergence vs. divergence) as well as the quality of the estimated solution (i.e.

believable or physically impossible). Although it is the goal to ultimately estimate

the rotational dynamics and moments of inertia of the RSO, the estimation process

cannot start without some initial information for these parameters. Ideally, if the

target is categorized as cooperative, the technical data of the RSO would be consid-

ered available and known with relatively high accuracy. However, for uncooperative

RSO targets, this may pose a challenge requiring some creativity for developing the

initial estimates and associated physical information (i.e. mass, moments of inertia,
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dimensions, structure, etc). In such cases several methods and tools exist to aid in

the development of this information. One method is space surveillance using ground

radar. FGAN Research Institute for High-Frequency Physics and Radar Techniques

in Wachtberg, Germany, utilizes a 34-meter Tracking and Imaging Radar (TIRA) to

investigate radar techniques for space surveillance applications [26]. One application

is providing attitude and configuration information for anomaly resolution [26]. After

the Japanese Advanced Earth Observation Satellite-I (ADEOS-I) spacecraft experi-

enced a malfunction in 1997, FGAN was able to use radar imagery of the spacecraft

along with a wire-grid model analysis to determine the loss of the 0.5 mm-thick solar

panel as well as the spacecrafts angular velocity components [26, 27, 28].

Figure 4.1 Radar Image of the ADEOS I Spacecraft (courtesy of FGAN-FHR)

FGAN determined that the spacecraft was rotating about two axes with angu-

lar velocities of approximately 0.1 deg/s and 0.4 deg/s [26, 28]. Using these quantities

solely as a priori knowledge for this scenario, the angular velocities will be arbitrarily

assigned to the following axes in the body frame of the Target.

ω1 = 0.0069
rad

s
and ω3 = 0.0017

rad

s
(4.1)
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Strictly for visualization purposes, the ADEOS I spacecraft will represent the

generic RSO Target body used in this simulation. Its distinctive geometry and

partially known characteristics make it well suited for this scenario. Therefore, Fig-

ure 4.2 illustrates the Target along with the assigned body axes in Fb and the obser-

vational points (n = 1, 2, 3) added.

b̂1

b̂2

b̂3

3

1

2

Figure 4.2 Simulated Resident Space Object

With the orbital information, angular velocity information, observation point

locations, and the Target geometry illustrated, the states at epoch are now pro-

vided. The rotational states of the Target at time t0 are shown in Table 4.1; for

simplicity, the body frame and the orbital frame are aligned at epoch. The relative

Table 4.1 Rotational States of the RSO at Epoch

ω1 [rad/s] ω2 [rad/s] ω3 [rad/s] θ1 [rad] θ2 [rad] θ3 [rad]

A Priori 0.0069 0 0.0017 0 0 0

Truth 0.01 0 0.001 0 0 0

position between the Target and the Observer Spacecraft should be relatively small

for a proximity operation. With the example of the RELAVIS LIDAR sensor which

has a maximum measurement range of 5 km [12] in mind, the relative motion states

are provided in Table 4.2. Although this particular Target would realistically be

described as semi-rigid, for the purpose of this thesis and consistent with the de-

terministic dynamics developed in Chapter 2, the RSO Target is considered a rigid
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Table 4.2 Relative Position & Velocity States of the RSO at Epoch

δx [m] δy [m] δz [m] δẋ [m/s] δẏ [m/s] δż [m/s]

A Priori 54 55 49 0.01 0.01 0.01

Truth 50 50 50 0.01 0.01 0.01

Error 8% 10% 2% 0% 0% 0%

body for the duration of the observation, having constant moments of inertia shown

in Table 4.3. Three trials will be accomplished for the 9-state estimation cases. Each

Table 4.3 Moments of Inertia of RSO

A [kg m2] B [kg m2] C [kg m2] Error

Trial 1 50.5 33 13.5 10%

Trial 2 54 36 12 20%

Trial 3 58.5 39 10.5 30%

Truth 45 30 15 -

trial will use initial conditions that consistently vary in percent error from the true

moment of inertia value.

The tracked observational points used on the Target body, measured from

the assumed center-of-mass location, are illustrated in Figure 4.2 and provided in

Table 4.4. Since the observation points are not being estimated, no distinction is

made between their true location and their approximated location.

Table 4.4 Observational Point Locations on RSO Body

n b1n [m] b2n [m] b3n [m]

1 0 0 20

2 2 6 -1

3 4 -1 -1

With the true initial conditions provided in the tables above, the Truth Model

program is executed resulting in the true dynamics model of the Observer-Target

system as well as generated data batches for simulated range measurements. The

relative position of the Observer with respect to the Target is illustrated in Figure 4.3.
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Figure 4.4 depicts the relative motion of the Observer about the Target for one orbital

period (of the Target). Figure 4.5 shows the trace that the tracked observational
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Figure 4.3 Relative Position Multi-View

points make, viewed in Fe, as the Target body rotates with angular velocities, ω1

and ω3, during the span of one orbital period.
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4.2 Case I

This case begins with the use of the RSS surface plot method to illustrate the

effects of the number of points (i.e. data sets) on local minima and solution ambi-

guity. Following the RSS analysis and generated best-guess values, one estimation

attempt is made using data with no noise. This case involves the following:

• RSS Surface Plot Analysis

• Data Type: Perfect (no noise)

• Number of Observational Points: One for Estimation

• Observational Time Span: 1
10

Orbital Period of Target

• Estimated States: 12-State Version

4.2.1 RSS Analysis. A method of refining an initial estimate is the use of

a residual sum squared surface plot. In the RSS program, the surface plot provides

an RSS value as a function of two state variables. The RSS value is essentially a

measure of how well the estimate fits the actual data. The two parameter values

that provide the minimum RSS value are the initial guess values that should be used

in the estimation algorithm.

Consider the that initial estimates for the relative position and velocity states

are representative of their true values to some satisfactory level of accuracy. However,

also consider that the estimates of the rotational velocities, determined by radar

image analysis, is considered a low-confidence estimate. Using the RSS analysis,

the low-confidence estimate can be used to develop an estimate that is closer to

the actual value. Table 4.1 provides the rough estimates based on the radar image

analysis. With the accuracy of the analysis known, the range or bound for the guess

is defined. For the purpose of this example, consider that the image analysis values
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lead one to believe the true values lie in the following range

0.001 < ω1(t0) < 0.02 and − 0.0005 < ω3(t0) < 0.05 (4.2)

and define ω1 as parameter 1 and ω3 as parameter 2. The user’s inputs include the

a priori estimates for relative motion from Table 4.2, the observational points from

Table 4.4, and the settings shown in Table 4.5. Since running this program with these

Table 4.5 RSS Guess Generator Boundary Conditions

Parameter Lower Bound Upper Bound No. of Increments

1 0.001 0.020 100

2 -0.0005 0.050 100

settings for all data sets takes approximately eight to ten hours of CPU time, and

with memory limitations of the computer used, only one tenth of the total data batch

(606 data points) will be used as the sample size for the RSS analysis. This provides

an adequate sample for determining the initial conditions of the two parameters for

this case. The surface plots and their associated contour plots resulting from the

execution of this program are shown in the Figure 4.6.

Figures 4.6a and 4.6b show the computed results of the first RSS solution

(Run 1) using observation point number one (i.e. one data batch). Recall that the

estimator will strive to minimize the sum of the residuals squared (i.e. the RSS

value) by finding a local minimum. Within the guess bounds (Equ. 4.2), two distinct

local minimums exist as clearly seen in the surface plot. One can see from the

contour plot (Fig. 4.6b) that the a priori estimates for ω1 and ω3 (Table 4.1) lies

roughly in between the minimums (the dark regions). This may pose a problem

for the estimator, as it may choose the wrong minimum, where the desired solution

does not lie. Keep in mind the location of the true solution as annotated on the

contour figure and given in Table 4.1. The global minimum is determined by the

RSS program to be the point where parameter 1 (ω1) is 0.0050 and parameter 2 (ω3)
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is 0.0102. This can be seen as the region which dips the lowest in surface plot and

the other major dark region in the contour plot. However, this is deceivingly the

wrong minimum and may very well lead the estimator in the wrong direction to an

incorrect solution.

By re-executing the RSS program (Run 2) using observation points one and

two (i.e. two independent data batches), the program provides Figures 4.6c and 4.6d.

Notice that the global minimum from the first run (Figure 4.6a and 4.6b) is being

reduced in depth and that the second local minimum (where the solution actually

lies) is now the global minimum in this run.

Run 3 of the RSS program, using a total of three observational points, the

program results in the plots seen in Figures 4.6e and 4.6f. Notice that in Figure 4.6e

only one major dip (minimum) is seen. From a contour perspective, this is clearly

seen in Figure 4.6f, as only one major and defined dark region exists in the location

of the true solution. This region is where the program-determined guess lies, which

is extremely close to the true location of the solution.

A summary of the results from the three RSS program runs are provided in

Table 4.6. The results are shown up to eight decimal digits to illustrate the imper-

fection. The number of observation points used correspond to the points listed in

Table 4.4 starting with n = 1. The percent error between the generated guess for

ω1 and ω3 and the true values (Table 4.1) are also given. By introducing multiple

independent batches of data from multiple range observations, the RSS solution is

drastically improved.

Table 4.6 RSS Parameter Results

Run No. Obs Points Used, n Par. 1 Estimate Error Par. 2 Estimate Error

1 1 0.00503030 50% 0.01021212 921%

2 1,2 0.01040404 4% 0.00256061 156%

3 1,2,3 0.01002020 0.2% 0.00103030 3%
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Figure 4.6 RSS Surface & Contour Plots
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Theoretically, the program should give a solution for two parameters (state

variables) that result in an RSS value of zero, a perfect data fit. However, recall

from Chapter 3 that this program is limited to providing a solution to two state

variables. In this case because there are 12 total states, 10 of the variables are

considered known constants by the RSS program. The imperfect results seen in

Table 4.6 are a consequence of imperfect initial values for those other 10 states used

in generating this result. The results from this RSS analysis will serve as the initial

state estimates for the estimation runs to follow.

The estimation attempt in this case will make use of the results from Run 3.

Table 4.7 provides the values used in Case I.

Table 4.7 Case I: Refined Rotational States of the RSO at Epoch

ω1 [rad/s] ω2 [rad/s] ω3 [rad/s] θ1 [rad] θ2 [rad] θ3 [rad]

Case 1A 0.0100 0 0.0010 0 0 0

Truth 0.01 0 0.001 0 0 0

Notice Run 3 of the RSS program (Table 4.6) produced values for ω1 and

ω3 that are essentially equal to the true state values up to three significant digits.

In order to fully make the estimation cases worthwhile and to legitimately test the

estimator’s performance, values near the true solution but not equal to, are preferred

in this study. Therefore, Table 4.8 lists the refined a priori initial conditions (from

Run 2) used for the Case II and Case III estimations.

Table 4.8 Refined Rotational States at Epoch for Cases II and III

ω1 [rad/s] ω2 [rad/s] ω3 [rad/s] θ1 [rad] θ2 [rad] θ3 [rad]

A Priori 0.0104 0 0.0026 0 0 0

Truth 0.01 0 0.001 0 0 0

4.2.2 Data Batch. The data set processed in this case uses a 606-observation

sample of the entire data batch, or one-tenth of the Target’s orbital period worth.
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This is done only to be consistent with the RSS Analysis, which also used the first

606 measurements. As mentioned, this case will make use of perfect simulated data

containing no Gaussian noise. The point number used corresponds to the observa-

tional points listed in Table 4.4. Table 4.9 provides a summary of the data set used

in this case.

Table 4.9 Case I: Data Batch Summary

Point No. n Batch Size Start Time [s] End Time [s] Time Step [s]

1 606 0 605 1

4.2.3 Estimation Case 1A. This portion of Case I uses the best-guess so-

lution for ω1 and ω3 provided by Run 3 of the RSS surface plot analysis. The initial

rotational dynamics states are provided in Table 4.7. Using the initial conditions for

relative position and velocity listed in Table 4.2 and observation point number one

listed in Table 4.4, the estimator program is executed with the following setting pro-

vided in Table 4.10 below. The setting imax represents the user-specified maximum

Table 4.10 Case I: Estimator Settings for 12-State Version

imax σinstr k1 k2 k3 States NumPts NoiseMode

200 5 × 10−5 0.25 0.01 0.20 12 1 off

number of iterations allowed before the program automatically terminates, States

defines the mode (9 or 12) for the estimated state version (Equ. 2.65 or Equ. 2.70),

NumPts sets the number of points to be used in the estimation process (i.e. range

data batches), and the NoiseMode string simply has the program use the version

of the range data containing no noise. Since the data contains no noise, it has a

standard deviation of σinstr = 0. However, to avoid the Q matrix (Equ. 2.97) from

becoming singular, σinstr = 0.00005 is used instead.

The estimator program converged on a solution in 38 iterations. Based on the

predicted range measurements, no significant difference exists between the estima-
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tor’s solution and the actual solution. Table 4.11 compares the true values of the

0 100 200 300 400 500 600 700
75

80

85

90

95

100

105

110

Actual Range Measurements vs. Predicted Range Measurements
Target Observation Point 1

Time [s]

R
an

ge
 [m

]

 

 

Act Range w/noise
Act Range w/o noise
Predicted Range

Figure 4.7 Case I: Predicted Range Profile (12-State)

states at epoch and the estimated results for this case. Propagating the estimator’s

Table 4.11 Case I: Estimated 12-State Solution at Epoch
State Variable Estimate, X̄(t0) Truth, X(t0) Error

δx [m] 52.16 50 4.3%

δy [m] 51.84 50 3.7%

δz [m] 46.42 50 7.2%

δẋ [m/s] 0.0163 0.01 63%

δẏ [m/s] -0.0025 0.01 125%

δż [m/s] 0.0152 0.01 52%

ω1 [rad/s] 0.0101 0.01 0.0001

ω2 [rad/s] 0.0001 0 0.0001

ω3 [rad/s] 0.0010 0.001 0.0001

θ1 [rad] -0.1167 0 0.1167

θ2 [rad] -0.0224 0 0.0224

θ3 [rad] -0.0830 0 0.0830

solution for the states at epoch, results in the dynamics shown for relative position

in Figure 4.8. Figure 4.9 illustrates the Euler angles. Additional data is presented
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Figure 4.8 Case I: Estimated Relative Position States (12-State)

in Appendix C for this case. It should be mentioned that in this estimation run,
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Figure 4.9 Case I: Estimated Euler Orientation Angle States (12-State)

had the σresid setting been changed to a value closer to machine zero, this run would

have failed the standard deviation convergence criterion. This solution is less ac-

curate than ideally desired for a case without noise and relatively accurate initial

values. The major error ranging from 52% to 125% is seen in the relative velocity

states (Table 4.11). These errors and σresid are due to the initial conditions of the

relative position variables. This estimation run is considered successful and satisfied

its purpose to illustrated a run using the RSS analysis results for data processing.

Further cases in this research will make use of the entire data batch containing noise.
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4.3 Case II

This will be the first case in which the estimation process is applied to simulated

data containing Gaussian noise. This case will involve the following:

• Data Type: Noisy (with Gaussian Error)

• Number of Observational Points: One

• Observational Time Span: 1 Orbital Period

• Estimated States: 12-State & 9-State Versions

The objective of this case is to generate an estimated solution using a single tracked

observation point (i.e. one range data set) for comparison with Case III involving

multiple observation points. Additional data is provided in Appendix C.

4.3.1 Data Batch. The generated data batch that is processed in both

portions of this case has 6053 simulated range measurements with a standard de-

viation listed below. A negligible difference between the standard deviation of the

instrument and the actual standard deviation of the data exists. This is simply

due to the user’s input of σinstr in the Truth Model script and the pseudo-random

number algorithm generating data nearly equal with some difference because of the

randomness involved. The value of σinstr will be used in estimation process. The

point number used corresponds to the observational points listed in Table 4.4.

Table 4.12 Case II: Data Batch Summary

Point No. n σinstr σact Batch Size Start Time [s] End Time [s] Time Step [s]

1 0.250 0.248 6053 0 6052 1

4.3.2 12-State Estimation. This portion of the case will involve estimating

both the relative motion dynamics and the rotational states of the RSO. Recall the
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12-state vector defined as,

X =
[

δx δy δz δẋ δẏ δż ω1 ω2 ω3 θ1 θ2 θ3

]T

During several initial runs made during the development of the estimator code, it

was determined that the program is generally stable and performs the best when

0.01 ≤ k1 ≤ 0.50. In this case, the estimator setting are provided below

Table 4.13 Case II: Estimator Settings for 12-State Version

imax σinstr k1 k2 k3 States NumPts NoiseMode

200 0.25 0.50 0.05 0.012 12 1 on

With the settings above, the program ran for approximately 4hrs where it

reached the maximum allowed number of iterations without convergence to an ac-

ceptable solution. The covariance criterion was met; however, the standard devia-

tion criterion was not. The standard deviation of the residuals from the estimation

process was approximately σresid ≈ 14, as seen in Figure 4.15 while the standard

deviation of noise error in the data batch is σinstr ≈ 0.25. Therefore, this refer-

ence solution remains only a reference solution and is not considered the estimated

trajectory. The last reference solution, Xref (t0), prior to program termination is

provided in the Table 4.14 along with the associated percent relative error from the

true states. To illustrate what the non-convergent solution resembles, the resulting

reference solution at imax is propagated forward in time to the end of the observa-

tional period. The relative position and velocity histories are shown in Figures 4.10

and 4.11. Their respective true error as a function of time is shown in Figures C.8

and C.9 in Appendix C. The six rotational dynamical states of the Target are il-

lustrated in Figures 4.12 and 4.13. Their associated true error plots are shown in

Figures C.10 and C.11. The overall solution of the reference trajectory resulted

in the predicted range observations shown in Figure 4.14 compared with the actual

noisy range data set. Notice that the solution results in a predicted range profile
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Figure 4.10 Case II: Estimated Relative Position States (12-State)

0 1000 2000 3000 4000 5000 6000 7000
−0.2

0

0.2
Relative Spacecraft Velocity WRT Target

δ 
x 

−
ve

l [
m

/s
]

 

 

Act
Est

0 1000 2000 3000 4000 5000 6000 7000
−1

−0.5

0

0.5

δ 
y 

−
ve

l [
m

/s
]

 

 

Act
Est

0 1000 2000 3000 4000 5000 6000 7000
−0.1

0

0.1

Time [s]

δ 
z 

−
ve

l [
m

/s
]

 

 

Act
Est

Figure 4.11 Case II: Estimated Relative Velocity States (12-State)
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Figure 4.12 Case II: Estimated Angular Velocity States (12-State)
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Table 4.14 Case II: Estimated 12-State Results at Epoch

State Variable Estimate, Xref (t0) Truth, X(t0) Error

δx [m] 32.06 50 35.9%

δy [m] -52.43 50 204.9%

δz [m] 76.27 50 52.5%

δẋ [m/s] -0.0022 0.01 122%

δẏ [m/s] 0.0409 0.01 309%

δż [m/s] 0.0159 0.01 59%

ω1 [rad/s] 0.0248 0.01 0.0148

ω2 [rad/s] -0.0434 0 0.0434

ω3 [rad/s] -0.0402 0.001 0.0392

θ1 [rad] 4.7289 0 4.7289

θ2 [rad] 0.9465 0 0.9465

θ3 [rad] 8.5974 0 8.5974
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Figure 4.13 Case II: Estimated Euler Orientation Angle States (12-State)

that does generally resemble the true range observations. The true range profile is

more nonlinear than it appears in Figure 4.14 simply because of the plot scale. The

estimated solution fits the middle portion without much trouble; however, the most

nonlinear regions, located approximately from 0 − 2000 s and 4000 − 6050 s, posed

the greatest difficulty for the estimator in this case. The distribution of the residu-

als between the predicted range observations and the actual observations provides a

means to judge the quality of the solution. Since the noise or error of the simulated

measurements is Gaussian in nature (by creation), the residuals of the predicted
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Figure 4.14 Case II: Predicted Range Profile (12-State)

observations should also resemble a Gaussian distribution with a similar standard

deviation. However, in this case σresid 6= σinstr, which is why the convergence criteria

failed. With the k3 setting defined in Table 4.13, the standard deviation criterion

required σresid to fall in the range of 0.247 ≤ σresid ≤ 0.253.

Figure 4.15a depicts a residual distribution that loosely resembles a distorted

Gaussian curve centered on zero, but with a standard deviation of approximately 14

meters. In Figure 4.15b the distribution of range residuals as a function of observa-

tion time is shown to have a desirable mean near zero, as mentioned; however, the

spread of residuals is not characteristic of a true normal distribution. From iteration

28 to 200, the standard deviation of the residuals remained at σresid ≈ 14.042. It

would appear that the estimator reached a local minimum indicated by this appar-

ent limit of the standard deviation. This will be discussed further in the last section

of this chapter. The covariance criterion was satisfied at iteration 55 till program
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Figure 4.15 Case II: Residual Distribution for Point No. 1 (12-State)

termination. This estimation attempt, that did not converge in 200 or less iterations

with the given filter settings, is considered a failed attempt.

4.3.3 9-State Estimation. This portion of Case II will attempt to estimate

the rotational states as well as the moments of inertia of the Target. To further

explore the ability to estimate the moments of inertia, three trials will be undertaken.

Recall the 9-state vector is given as

X =
[

ω1 ω2 ω3 θ1 θ2 θ3 A B C
]T

The estimator settings for this run are shown in Table 4.15. This case will make

Table 4.15 Case II: Estimator Settings for 9-State Version

imax σinstr k1 k2 k3 States NumPts NoiseMode

200 0.25 0.50 0.10 0.012 9 1 on

use of the same range data batch from the same single observation point used in

the 12-state run. The a priori initial estimates for the rotational states are listed
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in Table 4.8. Unlike the 12-State portion, this 9-State version of this process will

be completed for three trials using the initial conditions listed in Table 4.3 for the

moments of inertia. Note that each trial increases the relative error between the

initial guess and the true value of the MOI. After running the estimator program for

each trial, keeping all initial states besides the moments of inertia the same, results

in the following shown in Table 4.16 In this case, all trials satisfied the convergence

Table 4.16 Case II: Estimated 9-State Results at Epoch

Estimates

Variable Trial 1 Trial 2 Trial 3 Truth
[10% MOI Error] [20% MOI Error] [30% MOI Error]

ω1 [rad/s] 0.0100 0.0100 0.0100 0.01

ω2 [rad/s] 0.0000 0.0000 0.0000 0

ω3 [rad/s] 0.0000 0.0000 0.0000 0.001

θ1 [rad] 0.0002 0.0004 0.0007 0

θ2 [rad] 0.0013 0.0015 0.0000 0

θ3 [rad] 0.0020 0.0015 0.0014 0

A [m2kg] 50.76 53.91 58.54 45

B [m2kg] 32.73 36.10 38.96 30

C [m2kg] 13.19 12.12 10.43 15

σresid [m] 0.249 0.249 0.249 0.247

iterations 9 8 8 -

processing time [s] 98 100 120 -
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Figure 4.16 Case II: Estimated Angular Velocity States (9-State)
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Figure 4.17 Case II: True Error of Estimated Angular Velocities (9-State)
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Figure 4.18 Case II: Estimated Euler Orientation Angle States (9-State)
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Figure 4.19 Case II: True Error of Estimated Euler Orientation Angles (9-State)
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Table 4.17 Case II: Percent Error of 9-State Estimates

Error of Estimates

Variable Trial 1 Trial 2 Trial 3

[10% MOI Error] [20% MOI Error] [30% MOI Error]

ω1 [rad/s] 0 0 0

ω2 [rad/s] 0 0 0

ω3 [rad/s] 0.001 0.001 0.001

θ1 [rad] 0.0002 0.0004 0.0007

θ2 [rad] 0.0013 0.0015 0

θ3 [rad] 0.0020 0.0015 0.0014

A 12.8% 19.8% 30.1%

B 9.1% 20.3% 29.9%

C 12.1% 19.2% 30.5%

σresid 0.8% 0.8% 0.8%

criteria. Propagating the estimated solution for Trial 2 forward in time, yields the

following results. Using the Trial 2 solution as an example, the predicted range

measurements are shown in Figure 4.20. To illustrate that the predicted range is truly

a perfect fit to the actual data set and well within the noise, Figure C.12 provides a

zoomed in caption of the range profile in the region of 5740−6050 s. The distribution

of the residuals is provided in Figure 4.21. The histogram (Fig. 4.21a) shows the

estimation residuals having a Gaussian distribution comparable to the distribution of

the induced measurement error in the data set (e.g. Fig. 3.3). Figure 4.21b illustrates

the distribution of the residuals as a function of time with σresid annotated. This is

characteristic of the added Gaussian noise (e.g. Fig. 3.4). This 9-state estimation

run is considered a success using only one data set in the estimation process. The

only area of concern is that the solution indicates one axis of rotation. This will be

discussed in a later section.
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Figure 4.20 Case II: Predicted Range Profile (9-State)
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Figure 4.21 Case II: Residual Distribution for Point No. 1 (9-State)
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4.4 Case III

The 12 and 9 state portions of this case will examine the results of the esti-

mation process using two data sets from the observation of two points on the Target

body instead of just one. Specifically, this case will involve the following:

• Data Type: Noisy (with Gaussian Error)

• Number of Observational Points: Two

• Observational Time Span: 1 Orbital Period

• Estimated States: 12-State & 9-State Versions

The objective of this case is to determine if processing two data batches (from two

observation points) affects the estimated solution versus the solution formed from

processing a single data batch. This will be applied to both versions of the state

vector. Additional data is provided in Appendix C.

4.4.1 Data Batch. Two data batches are processed in this case. The first

data batch associated with observation point 1 is the same data set used in Case II.

The second data set used is associated with observation point 2, as listed in Table 4.4.

Table 4.18 provides the specifics for the data sets used in this case.

Table 4.18 Case III: Data Batch Summary

Point No. n σinstr σact Batch Size Start Time [s] End Time [s] Time Step [s]

1 0.250 0.248 6053 0 6052 1

2 0.250 0.247 6053 0 6052 1

4.4.2 12-State Estimation. This portion of the case will involve estimating

both the relative motion dynamics and the rotational states of the RSO using two

sets of data. The estimator setting are provided Table 4.19.
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Table 4.19 Case III: Estimator Settings for 12-State Version

imax σinstr k1 k2 k3 States NumPts NoiseMode

200 0.25 0.50 0.05 0.012 12 1 on

The program ran for approximately 100 s where it met both the covariance and

standard deviation criteria and converged to a solution in 13 iterations. Table 4.20

lists the results of the estimated solution for the 12 states at epoch.

Table 4.20 Case III: Estimated 12-State Results at Epoch

State Variable Estimate, X̄(t0) Truth, X(t0) Error

δx [m] 50.01 50 0.02%

δy [m] 50.04 50 0.08%

δz [m] 49.95 50 0.1%

δẋ [m/s] 0.0100 0.01 0

δẏ [m/s] 0.0100 0.01 0

δż [m/s] 0.0100 0.01 0

ω1 [rad/s] 0.0100 0.01 0

ω2 [rad/s] 0.0000 0 0

ω3 [rad/s] 0.0010 0.001 0

θ1 [rad] -0.0006 0 0.0006

θ2 [rad] 0.0004 0 0.0004

θ3 [rad] 0.0018 0 0.0008

σresidn=1 [m] 0.249 0.248 0.4%

σresidn=2 [m] 0.251 0.247 1.6%

The estimated states at epoch propagated forward in time to the end of the

observational period results in Figures 4.22 and 4.23, along with their true error

plots for relative motion shown in Appendix C. The rotational dynamics from the

estimated solution are shown in Figures 4.24 and 4.25. Applying the observation

function with the estimated dynamics results in the predicted range observations

for each observational point shown in Figure 4.26. The residuals from the predicted

range observation and the actual range measurements have a distribution illustrated

in Figures 4.27 and 4.28 for each data batch.
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Figure 4.22 Case III: Estimated Relative Position States (12-State)
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Figure 4.23 Case III: Estimated Relative Velocity States (12-State)
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Figure 4.24 Case III: Estimated Angular Velocity States (12-State)
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Figure 4.25 Case III: Estimated Euler Orientation Angle States (12-State)
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Figure 4.26 Case III: Predicted Range Profiles (12-State)
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Figure 4.27 Case III: Residual Distribution for Point No. 1 (12-State)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

350

400

450

Residual Distribution of Predicted Range Data
Target Observation Point 2

σ
resid

 = 0.25      µ
resid

 = −0.04

Residual Bin Size [m]

N
um

be
r 

of
 O

cc
ur

an
ce

s

0 1000 2000 3000 4000 5000 6000 7000
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

  ←  +σ
resid

  ←  −σ
resid

  ←  µ
resid

Range Residuals of Estimated Solution
Target Observation Point 2

σ
resid

 = 0.25     µ
resid

 = −0.04

Time [s]

R
an

ge
 R

es
id

ua
ls

 [m
]

 

 
Range Residual
σ

instr
 = +0.25

µ
instr

 = 0.00

σ
instr

 = −0.25

(a) (b)

Figure 4.28 Case III: Residual Distribution for Point No. 2 (12-State)
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4.4.3 9-State Estimation. This portion of Case III will attempt to form

an estimated solution of the rotational states as well as the moments of inertia of

the Target using two data batches from two observation points. This section will

also perform three trials of the estimation process for comparison with Case II. The

estimator settings for this run are shown in Table 4.21. This case will use the same

Table 4.21 Case III: Estimator Settings for 9-State Version

imax σinstr k1 k2 k3 States NumPts NoiseMode

200 0.25 0.50 0.10 0.012 9 1 on

data batch from the previous 12-state run. As mentioned, this case will process

two data sets, one of which is the same data batch used in Case II. The a priori

initial states for the angular velocities and the Euler angles are listed in Table 4.8.

The the three trials are once again accomplished as listed in Table 4.3. Running

the nonlinear least squares estimator program for each trial, resulted in the data

presented in Table C.1

Table 4.22 Case III: Estimated 9-State Results at Epoch

Estimates

Variable Trial 1 Trial 2 Trial 3 Truth
[10% MOI Error] [20% MOI Error] [30% MOI Error]

ω1 [rad/s] 0.0100 0.0100 0.0100 0.01

ω2 [rad/s] 0.0000 0.0000 0.0000 0

ω3 [rad/s] 0.0010 0.0010 0.0000 .001

θ1 [rad] 0.0001 0.0012 0.0004 0

θ2 [rad] -0.0003 0.0002 -0.0079 0

θ3 [rad] 0.0009 -0.0023 -0.0008 0

A [m2kg] 46.96 52.92 58.21 45

B [m2kg] 38.66 35.60 39.90 30

C [m2kg] 8.28 17.30 9.25 15

σresidn=1 [m] 0.249 0.252 0.256 0.248

σresidn=2 [m] 0.249 0.248 0.326 0.247

iterations 18 21 200 -

processing time [s] 213 268 2871 -
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Table 4.23 Case III: Percent Error of 9-State Estimation Results

Percent Error of Estimates

Variable Trial 1 Trial 2 Trial 3

[10% MOI Error] [20% MOI Error] [30% MOI Error]

ω1 [rad/s] 0 0 0

ω2 [rad/s] 0 0 0

ω3 [rad/s] 0 0 0.0010

θ1 [rad] 0.0001 0.0012 0.0004

θ2 [rad] 0.0003 0.0002 0.0079

θ3 [rad] 0.0009 0.0023 0.0008

A [m2kg] 4.4% 17.6% 29.4%

B [m2kg] 28.9% 18.7% 33%

C [m2kg] 44.8% 15.3% 38.3%

σresidn=1 0.4% 1.6% 3.2%

σresidn=2 0.8% 0.4% 32%

Using the Trial 2 estimated solution, the rotational dynamics is shown in Fig-

ures 4.29 and 4.31, along with their associated true error as a function of time.
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Figure 4.29 Case III: Estimated Angular Velocity States (9-State)

The estimated dynamics results in a predicted range measurement for each

observational point shown in Figure 4.33. The associated residuals are illustrated in

the Gaussian curves shown in Figure 4.34 and Figure 4.35. The estimation residuals

and the measurement error satisfied the condition σresid ≈ σinstr.
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Figure 4.30 Case III: True Error of Estimated Angular Velocities (9-State)
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Figure 4.31 Case III: Estimated Euler Orientation Angle States (9-State)
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Figure 4.32 Case III: True Error of Estimated Euler Orientation Angles (9-State)
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Figure 4.33 Case III: Predicted Range Profiles (9-State)
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Figure 4.34 Case III: Residual Distribution for Point No. 1 (9-State)
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Figure 4.35 Case III: Residual Distribution for Point No. 2 (9-State)

4.5 Discussion

With the results of the simulation and estimation cases presented, this section

will provide a comprehensive discussion of the results through the comparison of

solution error and estimator performance parameters.

4.5.1 Case I. The RSS surface and contour plots clearly show how intro-

ducing multiple data batches reduces the number of overall solutions that satisfy

the observation relation (Equ. 3.11). Recall that Equ. 3.11 has three squared terms,

which allows for multiple solutions to exist. Table 4.6 shows that for one data set the

error between the estimated and true solutions for parameters 1 and 2 is 50% and

921%, respectively. By processing three data sets, the RSS analysis yields solutions

for the two parameters with an error of 0.2% and 3%, respectively. With the dras-

tic improvement, a sample estimation case (Case IA) is attempted using the most

accurate RSS result. This estimation case converged and is therefore, considered

a success. However, with no noise and with a near-perfect guess for the nonlinear

dynamics, one would have expected a nearly perfect estimate with a distribution of
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residuals closer to zero. This was not the outcome. In fact, had σinstr been set to

a value closer to machine zero, the standard deviation criterion would have failed.

This was discovered by allowing the estimator to continue its iterations past con-

vergence where σresid remained practically constant at 5.77835× 10−5 from iteration

56 to 200. Several other attempts were made using different values for k1 with no

significant change in the outcome. It appears the estimator reached a limit of some

type preventing any improvement of the estimated solution. This limit seen in the

standard deviation remaining nearly constant for 144 iterations is most likely due

to the estimator finding a local minimum on a nearly level surface closely shared

with the desired solution. By adjusting the initial conditions of the relative position

states at epoch to values closer to the truth quickly resolved this problem. Case IA

simply shows the sensitivity of the estimator and the outcome based solely on the a

priori values used to start the estimation process.

4.5.2 Case II. Case II (12-State), which used a significantly larger data set

(6053 measurements), proved to be a failed estimation attempt without convergence.

As mentioned in the results, σresid remained at 14.042 meters from iteration 28 to 200.

The result of this can be seen in the radical rotational dynamics behavior. From

Figure 4.13, it appears that the singularity in the Euler angles is contributing to

the uncharacteristic rotational dynamics based on the incorrect reference solution at

epoch. The existence of multiple solutions is a valid concern here as it was with Case

IA, where an accuracy limit was reached by the estimator. The noisy data simply

introduces more difficulty for the estimator. In this case, the incorrect reference

solution is caught by the convergence criteria; specifically, the distribution of the

residuals. The 9-State portion of Case II illustrated the multi-solution problem

quite well. All three trials quickly converged to a solution in 8 to 9 iterations in

under 120 seconds with σresid ≈ σinstr. However, the difference is best seen in the

nonlinear rotational dynamics. The rotational equations of motion are nonlinear

and are extremely sensitive to the initial conditions. This is illustrated in the figures
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propagating the dynamics. The estimation would lead one to believe that the RSO is

in a single-axis spin. The error in the estimated MOI values are clearly related to the

error of the a priori initial estimates. This highlights the known fact in estimation,

that the better the initial guess, the better the estimate.

4.5.3 Case III. By introducing a second data batch to the estimation

process for Case III (12-State), the estimation results radically improved. Using

the same number of data points per noisy data set as in Case II, the results of

this case far exceed that of Case 1A and certainly Case II (12-State) in terms of

accuracy. In 100 seconds and 13 iterations convergence was reached resulting in an

estimated solution with σresid within 0.4% of σinstr for the first data set and 1.6% for

the second data set. In the 9-State estimation runs, trials one and two successfully

converged in 18 and 21 iterations, respectively and required 213 seconds and 268

seconds of processing time, respectively. The rotational dynamics slightly improved

while the moments of inertia suffered. Trial 3 failed the standard deviation criterion

and therefore, did not converge on a solution in under 200 iterations (48 minutes).

In fact, the Trial 3 run reached a constant σresid = 0.32618 meters (for the n = 2

data set) at iteration 76 until program termination at iteration 200. With two data

sets used in this estimation attempt and after convergence was reached for this trial

(using the same a prior information) in Case II, it is unlikely that solution ambiguity

is the primary fault. The other explanation for this failed attempt may be that the

moments of inertia are not fully observable. This possible cause is first apparent in

this case.

4.5.4 Case IV. In Appendix C, the results of a fourth case are provided.

This extra case uses the same initial conditions and filter settings as the previous 12-

State cases; however, three batches of data are processed together. The results of this

case are closer to the true values than Case III (12-State), emphasizing the improved

accuracy using multiple data sets in the estimation process for the 12-State vector
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version. However, the outcome was not successful for the 9-State estimation cases.

Using the same settings as in Case II and III (9-State), and making use of a third

data set, the estimator did not achieve convergence within the specified criteria and

all three trials failed. Details of these runs are found in Appendix C. All three trials

failed as a result of the residual distribution of the second data set (associated with

n = 2). With σresid ≈ 0.327, similar to Case III (9-State), the convergence criterion

was not satisfied for any of the three trials in 200 iterations. It is interesting to note

that convergence failure was attributed to data set two and that σresid for all three

trials were nearly equal. This is the first case where the introduction of an additional

data set actually resulted in poor performance and estimation failure for all trials.

With three data sets, it is difficult to associate the failure mechanism completely to

solution ambiguity. In fact, with this case it is more apparent that the moments of

inertia may simply not be observable.

4.5.5 Comparison of 12-State Cases. Table 4.24 compares the 12-State

estimate errors in terms of the number of data sets processed. As mentioned in the

results, the 12-State estimate using one data set took 200 iterations until program

termination. The 12-State estimation runs using two and three data sets converged

in 13 iterations (approximately 130 seconds). The table illustrates the improvement

in estimation accuracy as the number of data sets used is increased and solution

ambiguity is decreased.

4.5.6 Comparison of 9-State Cases. A similar comparison can be made

using Tables 4.17, 4.23, and the results presented in Appendix C. This section will

compare each 9-State estimation trial separately. For each trail, a comparison of the

number of data sets used and the resulting error will be made. For Trial 1, the a

priori estimates for the MOI have an initial error of 10% from the true values. The

average MOI errors (the average of components A, B, and C together) for runs made

using 1, 2, and 3 data sets are 11%, 26%, and 37%, respectively. In this case, the
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Table 4.24 12-State Estimation Error Summary

Estimate Error

State 1 Data Set 2 Data Sets 3 Data Sets
[Case II] [Case III] [Case IV]

δx [m] 35.9% 0.02% 0%

δy [m] 204.9% 0.08% 0%

δz [m] 52.5% 0.1% 0.0002%

δẋ [m/s] 122% 0% 0%

δẏ [m/s] 309% 0% 0%

δż [m/s] 59% 0% 0%

ω1 [rad/s] 0.0148 0.0000 0.0000

ω2 [rad/s] 0.0434 0.0000 0.0000

ω3 [rad/s] 0.0392 0.0000 0.0000

θ1 [rad] 4.7289 0.0006 0.0001

θ2 [rad] 0.9465 0.0004 0.0001

θ3 [rad] 8.5974 0.0008 0.0018

MOI error using a single data set is close to the a priori error of 10%. Otherwise,

increasing the number of data sets processed increased the moments of inertia error

overall while the error for the rotational states slightly decreased.

For Trial 2, the initial a priori estimates for the MOI have an error of 20%.

In this case, the average MOI error for estimation runs made with 1, 2, and 3 data

sets are 20%, 17%, and 18%, respectively. Increasing the number of data batches

processed did not improve the moments of inertia estimates yet it slightly improved

the rotational dynamics estimates. The average MOI error is relatively close to the

a priori MOI error.

Trial 3 uses initial values for the moments of inertia which are 30% in error

from the true values. In this Trial the two runs using multiple data sets (from Cases

III and IV) failed to converge. The average MOI errors for estimation runs involving

1, 2, and 3 data sets are 30%, 34%, and 34%. Once again, the average error is

comparable to the initial error used to begin the estimation process.
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4.6 Summary of Results

From the data presented here, it can be seen that multiple solutions that satisfy

the convergence criteria do in fact exist for this scenario. The solution uncertainty

can be significantly reduced while improving solution accuracy for the estimation

of the 12-State vector by processing multiple data sets (as shown in the 12-State

estimation cases). It can be said that accurate estimation of the relative motion

and rotational states proved to be possible. The direct estimation of the moments

of inertia however, proved to be more of a challenge with relatively lower accuracy

than the other estimated states if the convergence criteria was even achieved. This

may be partially due to the existence of multiple solutions but more importantly, the

lack of observability of the moments of inertia is the likely cause. If the moments of

inertia are not fully observable based on range measurements, the estimator would

then not be fully capable of accurately estimating the MOI (based on the equations

of motion) yielding poor results for the 9-State solutions. In such a case, processing

multiple data sets affects only solution ambiguity but does not improve observability.

This explanation best fits the results seen by this research for the 9-State vector

estimation runs. Slight improvements in the rotational dynamics are seen which

can be attributed to the reduction of multiple solutions using the additional data

sets. Unlike the improving rotational state estimates, the additional data sets do not

improve the MOI estimates. This conclusion will be discussed further in the next

Chapter. Note that for all of the MOI estimates (successful and unsuccessful), the

components are all positive and they all satisfy the true MOI relation of A > B > C.

Therefore, although the individual components of the moment-of-inertia matrix are

not well estimated, the proper relationship associated with the major, minor, and

intermediate axes of inertia of the simulated Resident Space Object are maintained.
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V. Conclusions & Recommendations

5.1 Summary

This thesis demonstrates the basic ability to accurately estimate the relative

motion and rotational dynamics of a simulated Resident Space Object using a non-

linear least squares estimation filter based on range observations collected during a

proximity mission. However, the feasibility of accurately estimating the moments of

inertia properties of the RSO is questionable and proved to be challenging. In fact,

this research concludes that the moments of inertia of the RSO may not be fully

observable using range observations alone. This thesis indicates that processing

multiple data batches significantly reduces solution ambiguity and improves estima-

tion accuracy, as seen with the 12-State vector estimation cases. Conclusions from

these estimated solutions can be drawn to further improve the understanding of the

dynamical and physical properties of the RSO.

5.2 Conclusions

This research indicates that implementing a nonlinear least squares estimator

can successfully result in an estimated solution for the relative motion dynamics,

rotational dynamics, and moments of inertia of an RSO with certain limitations.

The results from Case 1A and Case II (12-State) illustrate the critical role the initial

a priori estimates play in the overall success or failure of the estimation attempt.

The existence of multiple estimation solutions may prove to be quite problematic

in the case of an uncooperative RSO. One must discern between multiple solutions

that are all mathematically valid and the single solution representative of the true

states. This is challenging when the luxury of knowing the truth is not always

realistic. However taking multiple range measurements of tracked points on the RSO

body provides multiple data sets. Each data set significantly reduces the solution

ambiguity as shown in the RSS surface plots and demonstrated in Case III and IV
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(12-State). This can further enhance one’s estimation attempt and increase solution

believability and accuracy.

In this research the limitation of estimating the dynamical properties of the

RSO is limited to the deterministic two body motion developed in Chapter 2. This

is well suited for estimating the dynamics where the RSO is a small heavenly body

(e.g. an asteroid). However, when the RSO is a manmade spacecraft, this quickly

becomes a complex problem. RSO motion not fully described by classic two-body

dynamics would not be suited for the estimator used in this research. Thruster firings

for maneuvering or station-keeping, energy dissipation, and external perturbations

are all realistic contributors to the overall RSO dynamics, which are not captured

by this ideal model. From the model used in this research, and from the simulation,

one can say that the simulated RSO is rotating primarily about two axes at certain

estimated angular velocities (ω1 and ω3). At any instant in time, one could predict

the orientation of the RSO body. Also, with some knowledge of the moments of

inertia, the geometry, and the estimated angular velocities, one can conclude that

the RSO is spinning primarily about its major axis of inertia and is therefore, in

a relatively stable state. This study concludes that the relative position, relative

velocity, angular velocity, and orientation angle states can be accurately estimated

using the 12-State vector version by processing multiple range data sets.

Perhaps a more challenging task is to gain knowledge of the physical properties

of a RSO. This is true for both heavenly bodies as well as uncooperative Targets. At

a very basic level, this research shows that some knowledge of the physical properties

must be known or estimated beforehand. The RSO center-of-mass location is of key

importance to the following: the CW equations (for relative motion dynamics), the

coordinate frame transformations, the observational points measured from the CM,

and finally, for the moment-of-inertia components themselves. The 9-State cases in

this thesis demonstrate that the direct estimation of the moments of inertia using

range measurements alone is problematic. This research concludes that the moments
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of inertia may not be fully observable using the current dynamics model and range

observations. In this case, the use of multiple data sets simply improves solution

ambiguity (as seen in the rotational states) but does not affect observability (as seen

in the error of the MOI estimates). The quality of the MOI estimated results proved

to be directly related to the quality of the a priori initial guess. Therefore, a more

detailed study is required to examine the observability conditions and expressions

needed to accurately and directly estimate the moments of inertia.

5.3 Contributions

In the field of spacecraft proximity operations, this research illustrates the

application and performance of a nonlinear least squares estimation filter for relative

motion and rotational dynamics using range observations made by a spacecraft in the

vicinity of a RSO. Perhaps of more significance, this study exposes the limitations

of the implemented dynamics model and estimator in regard to the observability of

the moments of inertia of the Resident Space Object.

5.4 Recommendations

There are several areas in which additional research would be worthwhile to

pursue with this baseline ability established. Continuing with this nonlinear least

squares estimation approach, it would be of benefit to employ some realism to both

the truth model and the data sets. This would include incorporating J2 perturba-

tions, solar radiation pressure, and perhaps, atmospheric drag. To make the truth

model robust and versatile it would be beneficial to use quaternions to describe the

Target’s orientation and avoid singularity limitations. This research used data sets

which have data points at constant time intervals. It would be of interest to study

the effects of using data sets with measurements not taken entirely at constant time

intervals. This would simulate an intermittent data acquisition stream as well as

blackout periods when the tracked point is not visible to the sensor due to physi-
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cal obstruction. This leads to additional research in the amount of data needed for

successfully estimating the true states. LIDAR sensors which are now being used

frequently in rendezvous and proximity operations can provide data in a range and

two angle set or in a range vector set [12]. Introducing directional information into

the data would certainly refine the estimate and also reduce solution ambiguity. Ad-

ditionally, researching how the selected locations of the observational points on the

RSO affect the estimator’s results would prove beneficial. Of significant importance,

research should be conducted into the observability of the moments of inertia.

It would of interest to incorporate an extended Kalman filter into this estima-

tion process. This would simply involve a rearrangement and modification of the

existing matrices in the estimator code. Using at least two data sets for some batch

size, a least squares estimation is performed and at some point handed over to the

Kalman filter to continue the estimation of the state variables. This would be very

useful in the 12-State variable case.
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Appendix A. Linearized Observation

This appendix contains the calculations used to develop the partial derivatives which

are used to calculate the H matrix. Beginning with the derived range observation

function

G = rn =
√

(pxn
− δx)2 + (pyn

− δy)2 + (pzn
− δz)2 (A.1)

where the subscript n denotes observation point number n. Recall the definition

Hi(ti) ≡
∂G

∂X
(Xref (ti), ti) (A.2)

Note that the range equation above is a function of δx, δy, δz, pxn
, pyn

, and pzn
.

In terms of the dynamics state variables, the range equation is only a function of

δx, δy, δz, θ1, θ2, and θ3. For simplicity, all other state variables which the range

equation is not a function of are ignored till the end. This results in

H =
∂G

∂X
=

[

∂G

∂δx
∂G

∂δy
∂G

∂δz
∂G

∂θ1

∂G

∂θ2

∂G

∂θ3

]

(A.3)

Recalling that pxn
, pyn

, and pzn
are functions of the Euler angles due to the rotation

of the Target body, the H matrix can simply be found using the chain rule in the

following fashion

H =
[

∂G

∂δx
∂G

∂δy
∂G

∂δz
∂G

∂pxn

∂G

∂pyn

∂G

∂pzn

]





























1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 ∂pxn

∂θ1

∂pxn

∂θ2

∂pxn

∂θ3

0 0 0 ∂pyn

∂θ1

∂pyn

∂θ2

∂pyn

∂θ3

0 0 0 ∂pzn

∂θ1

∂pzn

∂θ2

∂pzn

∂θ3





























(A.4)
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To compute the partial derivatives recall that

‖re
n‖ = ‖[Reb]Rb

n − δρe‖ (A.5)

where the position vector in the orbital frame of the observation point is defined as

R
e
n = [Reb]Rb

n (A.6)

define the position vector in Fe as

R
e
n =



















pxn

pyn

pzn



















(A.7)

define the position vector in Fb as

R
b
n =



















b1n

b2n

b3n



















(A.8)

Then substituting the vector definitions into Equation A.6 yields



















pxn

pyn

pzn



















=











c2c3 s1s2c3 − c1s3 c1s2c3 + s1s3

c2s3 s1s2s3 + c1c3 c1s2s3 − s1c3

−s2 s1c2 c1c2





























b1n

b2n

b3n



















(A.9)

carrying out the matrix multiplication results in the following set of equations



















pxn

pyn

pzn



















=











b1n
c2c3 + b2n

(s1s2c3 − c1s3) + b3n
(c1s2c3 + s1s3)

b1n
c2s3 + b2n

(s1s2s3 + c1c3) + b3n
(c1s2s3 − s1c3)

−b1n
s2 + b2n

s1c2 + b3n
c1c2











(A.10)
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Taking the partial derivatives of each equation with respect to θ1, θ2, θ3 results in

∂pxn

∂θ1

= b2n
s2c3c1 + b2n

s3s1 − b3n
s2c3s1 + b3n

c1s3 (A.11)

∂pxn

∂θ2

= −b1n
c3s2 + b2n

s1c2c3 + b3n
c1c2c3 (A.12)

∂pxn

∂θ3

= −b1n
c2s3 − b2n

s1s2s3 − b2n
c1c3 − b3n

c1s2s3 + b3n
s1c3 (A.13)

∂pyn

∂θ1

= b2n
c1s2s3 − b2n

s1c3 − b3n
s1s2s3 − b3n

c1c3 (A.14)

∂pyn

∂θ2

= −b1n
s2s3 + b2n

s1c2s3 + b3n
c1c2s3 (A.15)

∂pyn

∂θ3

= b1n
c2c3 + b2n

s1s2c3 − b2n
c1s3 + b3n

c1s2c3 + b3n
s1s3 (A.16)

∂pzn

∂θ1

= b2n
c1c2 − b3n

s1c2 (A.17)

∂pzn

∂θ2

= −b1n
c2 − b2n

s1s2 − b3n
c1s2 (A.18)

∂pzn

∂θ3

= 0 (A.19)

Now taking the partial derivatives of the range function, Equation A.1, with respect

to δx, δy, and δz results in

∂G

∂δx
=

δx − pxn
√

(pxn
− δx)2 + (pyn

− δy)2 + (pzn
− δz)2

(A.20)

∂G

∂δy
=

δy − pyn
√

(pxn
− δx)2 + (pyn

− δy)2 + (pzn
− δz)2

(A.21)

∂G

∂δz
=

δz − pzn
√

(pxn
− δx)2 + (pyn

− δy)2 + (pzn
− δz)2

(A.22)

These 12 partial derivatives are coded into a MATLAB function file in the form of

Equation A.4. The computer carries out the matrix multiplication, and by the chain

rule, solves for the H matrix. Depending on which version of the state matrix is

used, the program forms the proper version of the H matrix.
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For the 12-state vector version defined as

X =
[

δx δy δz δẋ δẏ δż ω1 ω2 ω3 θ1 θ2 θ3

]T

the linearized observation function is the solution to

H =
[

∂G

∂δx
∂G

∂δy
∂G

∂δz
0 0 0 0 0 0 ∂G

∂θ1

∂G

∂θ2

∂G

∂θ3

]

(A.23)

For the 9-state vector version defined as

X =
[

ω1 ω2 ω3 θ1 θ2 θ3 A B C
]T

the linearized observation function is the solution to

H =
[

0 0 0 ∂G

∂θ1

∂G

∂θ2

∂G

∂θ3
0 0 0

]

(A.24)
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Appendix B. Linearized Dynamics

Recall an analytical solution to the Clohessy-Wiltshire equations exists. This so-

lution was presented in the form of a state transition matrix, Φcw, in Chapter 2.

Therefore, the state transition matrix for the rotational portion of the dynamics is

in need. As defined in Chapter 2, the rotational state vector is

Xrot(t) =
[

ω1 ω2 ω3 θ1 θ2 θ3

]T

(B.1)

The time-derivative of the rotational state vector is then given below. The vector

function, f , is then associated with each state equation of motion.

Ẋrot(t) =























































ω̇1

ω̇2

ω̇3

θ̇1

θ̇2

θ̇3























































=























































f1

f2

f3

f4

f5

f6























































= f (B.2)

The A matrix is defined as the matrix containing the partial derivatives of the

equations of motion with respect to the state variables.

A =





























∂f1

∂ω1

∂f1

∂ω2

∂f1

∂ω3

∂f1

∂θ1

∂f1

∂θ2

∂f1

∂θ3

∂f2

∂ω1

∂f2

∂ω2

∂f2

∂ω3

∂f2

∂θ1

∂f2

∂θ2

∂f2

∂θ3

∂f3

∂ω1

∂f3

∂ω2

∂f3

∂ω3

∂f3

∂θ1

∂f3

∂θ2

∂f3

∂θ3

∂f4

∂ω1

∂f4

∂ω2

∂f4

∂ω3

∂f4

∂θ1

∂f4

∂θ2

∂f4

∂θ3

∂f5

∂ω1

∂f5

∂ω2

∂f5

∂ω3

∂f5

∂θ1

∂f5

∂θ2

∂f5

∂θ3

∂f6

∂ω1

∂f6

∂ω2

∂f6

∂ω3

∂f6

∂θ1

∂f6

∂θ2

∂f6

∂θ3





























=





A11 03×3

A21 A22



 (B.3)
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The A matrix is partitioned in for clarity. The partial derivatives comprising each

sub-matrix are given as

A11 =











0 B−C
A

ω3
B−C

A
ω2

C−A
B

ω3 0 C−A
B

ω1

A−B
C

ω2
A−B

C
ω1 0











(B.4)

A21 =











1 s1t2 c1t2

0 c1 −s1

0 s1 sec2 c1 sec2











(B.5)

A22 =











ω2c1t2 − ω3t2s1 ω2s1 sec2
2 +ω3c1 sec2

2 0

−ω2s1 − ω3c1 0 0

ω2c1 sec2 −ω3s1 sec2 ω2s1 sec2 t2 + ω3c1 sec2 t2 0











(B.6)

where sx = sin θx, cx = cos θx, tx = tan θx, secx = sec θx, and sec2
x = sec2 θx. These

partial derivatives are coded into a MATLAB function file for the A matrix.

The state transition matrix for the rotational portion is defined as

Φrot =





























φ11 φ12 φ13 φ14 φ15 φ16

φ21 φ22 φ23 φ24 φ25 φ26

φ31 φ32 φ33 φ34 φ35 φ36

φ41 φ42 φ43 φ44 φ45 φ46

φ51 φ52 φ53 φ54 φ55 φ56

φ61 φ62 φ63 φ64 φ65 φ66





























(B.7)
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and the time-derivative of the state transition matrix is simply defined as

Φ̇rot =





























φ̇11 φ̇12 φ̇13 φ̇14 φ̇15 φ̇16

φ̇21 φ̇22 φ̇23 φ̇24 φ̇25 φ̇26

φ̇31 φ̇32 φ̇33 φ̇34 φ̇35 φ̇36

φ̇41 φ̇42 φ̇43 φ̇44 φ̇45 φ̇46

φ̇51 φ̇52 φ̇53 φ̇54 φ̇55 φ̇56

φ̇61 φ̇62 φ̇63 φ̇64 φ̇65 φ̇66





























(B.8)

The matrices above are coded into the estimation program and using a Runga-Kutta

algorithm, the numerical solution to

Φ̇rot(t, t0) = A(t)Φrot(t, t0) (B.9)

is solved for resulting in Φrot(t, t0). Incorporating the CW portion results in the

12× 12 state transition matrix for the 12-state vector version used in the estimation

process

Φ =





Φ
6×6
cw 06×6

06×6
Φ

6×6
rot



 (B.10)

In a similar fashion, the 9-state vector version of the A matrix and the state

transition matrix Φ is found. This section should be treated separate from the 12-

state version above. Re-defining similar variables, omitting the CW portion of the

state vector, and including the moment-of-inertia variables, the 9-state version is

formed. Beginning with the 9-state vector defined as

X =
[

ω1 ω2 ω3 θ1 θ2 θ3 A B C
]T
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the time-derivative of the state variables are taken resulting in

Ẋ(t) =



























































































ω̇1

ω̇2

ω̇3

θ̇1

θ̇2

θ̇3

Ȧ

Ḃ

Ċ



























































































=



























































































f1

f2

f3

f4

f5

f6

f7

f8

f9



























































































= f (B.11)

The 9-state version of the A matrix is defined as

A =















































∂f1

∂ω1

∂f1

∂ω2

∂f1

∂ω3

∂f1

∂θ1

∂f1

∂θ2

∂f1

∂θ3

∂f1

∂A

∂f1

∂B

∂f1

∂C

∂f2

∂ω1

∂f2

∂ω2

∂f2

∂ω3

∂f2

∂θ1

∂f2

∂θ2

∂f2

∂θ3

∂f2

∂A

∂f2

∂B

∂f2

∂C

∂f3

∂ω1

∂f3

∂ω2

∂f3

∂ω3

∂f3

∂θ1

∂f3

∂θ2

∂f3

∂θ3

∂f3

∂A

∂f3

∂B

∂f3

∂C

∂f4

∂ω1

∂f4

∂ω2

∂f4

∂ω3

∂f4

∂θ1

∂f4

∂θ2

∂f4

∂θ3

∂f4

∂A

∂f4

∂B

∂f4

∂C

∂f5

∂ω1

∂f5

∂ω2

∂f5

∂ω3

∂f5

∂θ1

∂f5

∂θ2

∂f5

∂θ3

∂f5

∂A

∂f5

∂B

∂f5

∂C

∂f6

∂ω1

∂f6

∂ω2

∂f6

∂ω3

∂f6

∂θ1

∂f6

∂θ2

∂f6

∂θ3

∂f6

∂A

∂f6

∂B

∂f6

∂C

∂f7

∂ω1

∂f7

∂ω2

∂f7

∂ω3

∂f7

∂θ1

∂f7

∂θ2

∂f7

∂θ3

∂f7

∂A

∂f7

∂B

∂f7

∂C

∂f8

∂ω1

∂f8

∂ω2

∂f8

∂ω3

∂f8

∂θ1

∂f8

∂θ2

∂f8

∂θ3

∂f8

∂A

∂f8

∂B

∂f8

∂C

∂f9

∂ω1

∂f9

∂ω2

∂f9

∂ω3

∂f9

∂θ1

∂f9

∂θ2

∂f9

∂θ3

∂f9

∂A

∂f9

∂B

∂f9

∂C















































=











A6×6
rot B3×3

03×3

03×9











(B.12)

The sub-matrix A6×6
rot is further partitioned into

A6×6
rot =





A11 03×3

A21 A22



 (B.13)
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where sub-matrices A11, A21, A22, are equal to Equations B.4, B.5, and B.6, respec-

tively. The solution to sub-matrix B is

B3×3 =











− (B−C)
A2 ω2ω3

1
A
ω2ω3 − 1

A
ω2ω3

− 1
B

ω1ω3 − (C−A)
B2 ω1ω3

1
B

ω1ω3

1
C
ω1ω2 − 1

C
ω1ω2 − (A−B)

C2 ω1ω2











(B.14)

This completes the solution to the 9×9 matrix A . The 9×9 state transition matrix

is then defined as

Φ =















































φ11 φ12 φ13 φ14 φ15 φ16 φ17 φ18 φ19

φ21 φ22 φ23 φ24 φ25 φ26 φ27 φ28 φ29

φ31 φ32 φ33 φ34 φ35 φ36 φ37 φ38 φ39

φ41 φ42 φ43 φ44 φ45 φ46 φ47 φ48 φ49

φ51 φ52 φ53 φ54 φ55 φ56 φ57 φ58 φ59

φ61 φ62 φ63 φ64 φ65 φ66 φ67 φ68 φ69

φ71 φ72 φ73 φ74 φ75 φ76 φ77 φ78 φ79

φ81 φ82 φ83 φ84 φ85 φ86 φ87 φ88 φ89

φ91 φ92 φ93 φ94 φ95 φ96 φ97 φ98 φ99















































(B.15)
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and the time-derivative of the state transition matrix is defined as

Φ̇ =















































φ̇11 φ̇12 φ̇13 φ̇14 φ̇15 φ̇16 φ̇17 φ̇18 φ̇19

φ̇21 φ̇22 φ̇23 φ̇24 φ̇25 φ̇26 φ̇27 φ̇28 φ̇29

φ̇31 φ̇32 φ̇33 φ̇34 φ̇35 φ̇36 φ̇37 φ̇38 φ̇39

φ̇41 φ̇42 φ̇43 φ̇44 φ̇45 φ̇46 φ̇47 φ̇48 φ̇49

φ̇51 φ̇52 φ̇53 φ̇54 φ̇55 φ̇56 φ̇57 φ̇58 φ̇59

φ̇61 φ̇62 φ̇63 φ̇64 φ̇65 φ̇66 φ̇67 φ̇68 φ̇69

φ̇71 φ̇72 φ̇73 φ̇74 φ̇75 φ̇76 φ̇77 φ̇78 φ̇79

φ̇81 φ̇82 φ̇83 φ̇84 φ̇85 φ̇86 φ̇87 φ̇88 φ̇89

φ̇91 φ̇92 φ̇93 φ̇94 φ̇95 φ̇96 φ̇97 φ̇98 φ̇99















































(B.16)

The A, Φ, and Φ̇ matrices above are coded into the estimation program and using

a Runga-Kutta numerical integration algorithm, the numerical solution to

Φ̇(t, t0) = A(t)Φ(t, t0) (B.17)

is solved for. This results in the numerical solution of the 9 × 9 state transition

matrix Φ(t, t0) for the 9-variable state vector.
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Appendix C. Additional Data

Truth Model Data

The Truth Model program settings and constants are shown in Figure C.17

Figure C.1 Truth Model

Case I Additional Data

Additional data from Case 1A are provided in the figures below.

Case II Additional Data
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Figure C.2 Case I: True Error of Relative Position Estimates
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Figure C.3 Case I: Estimated Relative Velocity States
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Figure C.4 Case I: True Error of Relative Velocity Estimates
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Figure C.5 Case I: Estimated Angular Velocity States

0 100 200 300 400 500 600 700
1.46

1.47

1.48
x 10

−4 Angular Velocity Error

ω
1 E

rr
or

 [r
ad

/s
]

0 100 200 300 400 500 600 700
−2

0

2
x 10

−4

ω
2 E

rr
or

 [r
ad

/s
]

0 100 200 300 400 500 600 700
−5

0

5
x 10

−5

Time [s]

ω
3 E

rr
or

 [r
ad

/s
]

Figure C.6 Case I: True Error of Angular Velocity Estimates
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Figure C.7 Case I: True Error of Euler Orientation Angle Estimates
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Figure C.8 Case II: True Error of Relative Position Estimates(12-State)
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Figure C.9 Case II: True Error of Relative Velocity Estimates (12-State)
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Figure C.10 Case II: True Error of Angular Velocity Estimates (12-State)
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Figure C.11 Case II: True Error of Euler Orientation Angle Estimates (12-State)
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Figure C.12 Case II: Range Profile Close-Up View (9-State)
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Case III Additional Data
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Figure C.13 Case III: True Error of Relative Position (12-State)
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Figure C.14 Case III: True Error of Relative Velocity (12-State)
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Figure C.15 Case III: True Error of Angular Velocities (12-State)
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Figure C.16 Case III: True Error of Euler Orientation Angles (12-State)
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Case IV Data

Figure C.17 Case IV: Estimation Results
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Figure C.18 Case IV: True Error of Relative Position Estimates (12-State)

All three cases satisfied the covariance criterion at approximately iteration

10. The standard deviation criterion was not satisfied for any of the three trials.

Interestingly, the σresid for all three data sets, and for all three trials, remained ap-

proximately constant to 4 significant digits near iteration 15 till program termination

at imax = 200. The similar estimated values for the rotational states, regardless of
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Figure C.19 Case IV: True Error of Relative Velocity Estimates (12-State)
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Figure C.20 Case IV: True Error of Angular Velocity Estimates (12-State)

the MOI, might suggest a multiple solution. It is also possible that the differential

equations for the MOI components are the cause. Closer investigation should be ac-

complished to determine the cause of these solutions which seem to be reaching some

limit of accuracy with respect to the residuals. Completing a RSS surface plot for

this case might provide insight to this unpredicted behavior. It would be interesting

to use data sets from other points to see if the apparent σresid limits changes. It

should be mentioned that different values of k1 were tried with no significant change

in the outcome.
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Figure C.21 Case IV: True Error of Euler Angle Estimates (12-State)

Table C.1 Case IV: Estimated 9-State Results at Epoch

Estimates

Variable Trial 1 Trial 2 Trial 3 Truth
[10% MOI Error] [20% MOI Error] [30% MOI Error]

ω1 [rad/s] 0.0100 0.0100 0.0100 0.01

ω2 [rad/s] 0.0001 0.0000 0.0000 0

ω3 [rad/s] -0.0001 -0.0001 0.0000 .001

θ1 [rad] 0.0004 0.0004 0.0000 0

θ2 [rad] -0.0107 -0.0107 -0.0091 0

θ3 [rad] -0.0100 0.0007 0.0005 0

A [m2kg] 46.68 54.55 58.07 45

B [m2kg] 40.62 34.99 40.01 30

C [m2kg] 4.09 12.50 9.08 15

σresidn=1 [m] 0.257 0.257 0.257 0.248

σresidn=2 [m] 0.323 0.327 0.327 0.247

σresidn=3 [m] 0.287 0.285 0.285 0.250

iterations 200 200 200 -

processing time [s] 2535 2436 2659 -
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